Skip to main content
Social Sci LibreTexts

9.5: Conclusion

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Young children have a natural interest, curiosity, and competence to explore and construct mathematical concepts. Mathematics is a way of thinking and organizing the world around us. It is a natural part of day-to-day activities and events. Mathematics in preschool is learned through children’s play and exploration as in the blocks area or the sand­box, through everyday routines such as setting the table and cleaning up, and through participation in teacher-initiated activities. Some teacher-initiated activities are designed with a focus on math, and others may focus on art, movement, literacy, or science but present opportunities for math learning.

    When teachers recognize the potential for exposure to math in different situations, they can turn everyday occurrences into exciting and effective mathematics-learning experiences. Children are excited to explore the size or volume of objects, to discover and create patterns, to manipulate and build with shapes, to sort and classify objects, and to try to figure out “how many.” Teachers get to experience with children the day-to-day excitement of learning and discovering math. This process is joyful for the children and for the teacher, who guides and challenges them in building mathematical concepts, skills, and language [1]

    Pause to Reflect

    Many adults (including parents and teachers) shy away from math because they “aren’t good at it.” How do you feel about math? How comfortable are you “teaching” math? Has the way this chapter presented math affected that at all? If so, how?


    [1] The California Preschool Curriculum Framework, Volume 1 by the California Department of Education is used with permission

    This page titled 9.5: Conclusion is shared under a not declared license and was authored, remixed, and/or curated by Jennifer Paris, Kristin Beeve, & Clint Springer.