Skip to main content
Social Sci LibreTexts

18.8: References

  • Page ID
    237054
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    18.1 Memory is Classified Based on Time Course and Type of Information Stored

    Annese, J., Schenker-Ahmed, N. M., Bartsch, H., Maechler, P., Sheh, C., Thomas, N., ... & Corkin, S. (2014). Postmortem examination of patient H.M.'s brain based on histological sectioning and digital 3D reconstruction. Nature Communications, 5, 3122. https://doi.org/10.1038/ncomms4122

    Augustinack, J. C., van der Kouwe, A. J., Salat, D. H., Benner, T., Stevens, A. A., Annese, J., ... & Corkin, S. (2014). H.M.'s contributions to neuroscience: a review and autopsy studies. Hippocampus, 24(11), 1267-1286. doi.org/10.1002/hipo.22354

    Barnes, C. A. (1979). Memory deficits associated with senescence – neurophysiological and behavioral – study in the rat. Journal of Comparative and Physiological Psychology, 93, 74–104.

    Barnes, C. A., Suster, M. S., Shen, J., & McNaughton, B. L. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388(6639), 272-275. https://doi.org/10.1038/40859

    Frick, K. M., Baxter, M. G., Markowska, A. L., Olton, D. S., and Price, D. L. (1995). Age-related spatial reference and working-memory deficits assessed in the water maze. Neurobiology of Aging, 16, 149–160.

    Gage, F. H., Dunnett, S. B., & Bjorklund, A. (1984). Spatial learning and motor deficits in aged rats. Neurobiology of Aging, 5, 43–48.

    Gallagher, M., & Burwell, R. D. (1989). Relationship of age-related decline across several behavioral domains. Neurobiology of Aging, 10, 691–708.

    Granzotto, A., & Sensi, S. L. (2023). Once upon a time, the Amyloid Cascade Hypothesis. Ageing Research Reviews. https://doi.org/10.1016/j.arr.2023.102161

    Haddad, H. W., Malone, G. W., Comardelle, N. J., Degueure, A. E., Kaye, A. M., & Kaye, A. D. (2022). Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of Alzheimer's Disease: A Comprehensive Review. Health Psychology Research, 10(1), 31925. https://doi.org/10.52965/001c.31925

    Herrup, K. (2022). Fallacies in Neuroscience: The Alzheimer's Edition. eNeuro, 9(1). https://doi.org/10.1523/ENEURO.0530-21.2021

    Josselyn, S. A., & Frankland, P. W. (2012). Infantile amnesia: a neurogenic hypothesis. Learning & Memory, 19(9), 423-433. https://doi.org/10.1101/lm.021311.110

    Kleen, J. K., Scott, R. C., Holmes, G. L., Roberts, D. W., Rundle, M. M., Testorf, M., ... & Jobst, B. C. (2013). Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology, 81(1), 18-24. doi.org/10.1212/WNL.0b013e318297ee50

    Kopelman, M. D. (2022). What is the Korsakoff syndrome? - a paper in tribute to Prof Alwyn Lishman. Cognitive Neuropsychiatry, 27(4), 296-313. doi.org/10.1080/13546805.2022.2067472

    Lenck-Santini, P. P., & Scott, R. C. (2015). Mechanisms Responsible for Cognitive Impairment in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 5(10). https://doi.org/10.1101/cshperspect.a022772

    Li, K. Y., Huang, L. C., Chang, Y. P., & Yang, Y. H. (2020). The effects of lacosamide on cognitive function and psychiatric profiles in patients with epilepsy. Epilepsy & Behavior, 113, 107580. https://doi.org/10.1016/j.yebeh.2020.107580

    Li, R. X., Ma, Y. H., Tan, L., & Yu, J. T. (2022). Prospective biomarkers of Alzheimer's disease: A systematic review and meta-analysis. Ageing Research Reviews, 81, 101699. https://doi.org/10.1016/j.arr.2022.101699

    Loftus, E. F. (2005). Planting misinformation in the human mind: A 30-year investigation of the malleability of memory. Learning & Memory, 12(4), 361–366. https://doi.org/10.1101/lm.94705

    McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287(5451), 248-251. doi.org/10.1126/science.287.5451.248

    Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722-726. https://doi.org/10.1038/35021052

    Nyffeler, M., Yee, B. K., Feldon, J., & Knuesel, I. (2010). Abnormal differentiation of newborn granule cells in age-related working memory impairments. Neurobiology of Aging, 31, 1956–1974.

    Rajan, K. B., Weuve, J., Barnes, L. L., McAninch, E. A., Wilson, R. S., & Evans, D. A. (2021). Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020-2060). Alzheimer's & Dementia, 17(12), 1966-1975. doi.org/10.1002/alz.12362

    Scharfman, H. E. (2007). The neurobiology of epilepsy. Current Neurology and Neuroscience Reports, 7(4), 348-354. https://doi.org/10.1007/s11910-007-0053-z

    Scheffer, I. E., & Nabbout, R. (2019). SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 60 Suppl 3, S17-S24. doi.org/10.1111/epi.16386

    Squire, L. R. (2009). Memory and brain systems: 1969-2009. Journal of Neuroscience, 29(41), 12711-12716. https://doi.org/10.1523/JNEUROSCI.3575-09.2009

    Sperling, George (1963). A model for visual memory tasks. Human Factors, 5: 19–31.

    Talarico, J. M., & Rubin, D. C. (2003). Confidence, not consistency, characterizes flashbulb memories. Psychological Science, 14(5), 455-61. doi.org/10.1111/1467-9280.02453

    Todd, S., Barr, S., Roberts, M., & Passmore, A. P. (2013). Survival in dementia and predictors of mortality: a review. International Journal of Geriatric Psychiatry, 28(11), 1109-1124. doi.org/10.1002/gps.3946

    U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Aging. (Updated 2021). What Causes Alzheimer’s Disease? Retrieved from www.nia.nih.gov/health/what-...eimers-disease

    White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory, 77(2), 125-184. https://doi.org/10.1006/nlme.2001.4008

    Yeo-Teh, N. S. L., & Tang, B. L. (2023). A Review of Scientific Ethics Issues Associated with the Recently Approved Drugs for Alzheimer's Disease. Science and Engineering Ethics, 29(1):2. https://doi.org/10.1007/s11948-022-00422-0

    18.2 Implicit Memories: Associative vs. Nonassociative Learning

    Izquierdo, I., Furini, C. R., & Myskiw, J. C. (2016). Fear Memory. Physiological Reviews, 96(2), 695-750. doi.org/10.1152/physrev.00018.2015

    Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484(7394), 381-385. https://doi.org/10.1038/nature11028

    McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: essential involvement in the classically conditioned eyelid response. Science, 223(4633), 296-299. doi.org/10.1126/science.6701513

    Rudy, J. W. (2008). The neurobiology of learning and memory. Sinauer Associates, Sunderland, Massachusetts.

    Staddon, J. E., & Cerutti, D. T. (2003). Operant conditioning. Annual Review of Psychology, 54, 115-144. doi.org/10.1146/annurev.psyc....101601.145124

    VanElzakker, M. B., Dahlgren, M. K., Davis, F. C., Dubois, S., & Shin, L. M. (2014). From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiology of Learning and Memory, 113, 3-18. https://doi.org/10.1016/j.nlm.2013.11.014

    18.3 Explicit Memories: Episodic and Semantic Memories

    Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325-340.

    Buzsáki, G., & Tingley, D. (2018). Space and Time: The Hippocampus as a Sequence Generator. Trends in Cognitive Sciences, 22(10), 853-869. https://doi.org/10.1016/j.tics.2018.07.006

    Chettih, S. N., Mackevicius, E. L., Hale, S., Aronov, D. (2023). Barcoding of episodic memories in the hippocampus of a food-caching bird. bioRxiv [Preprint]. https://doi.org/10.1101/2023.05.27.542597

    Clayton, N., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. https://doi.org/10.1038/26216

    Devito, L. M., & Eichenbaum, H. (2011). Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. Journal of Neuroscience, 31(9), 3169-3175. https://doi.org/10.1523/JNEUROSCI.4202-10.2011

    Ekstrom, A., Kahana, M., Caplan, J., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188. https://doi.org/10.1038/nature01964

    Eichenbaum, H., Otto, T., & Cohen, N. J. (1992). The hippocampus—what does it do? Behavioral Neural Biology, 57(1), 2-36. https://doi.org/10.1016/0163-1047(92)90724-i

    Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5(5), 458-462. https://doi.org/10.1038/nn834

    Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. https://doi.org/10.1038/nature03721

    Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116(2), 286-290. doi.org/10.1037//0735-7044.116.2.286

    Kropff, E., Carmichael, J. E., Moser, M. B., & Moser, E. I. (2015). Speed cells in the medial entorhinal cortex. Nature, 523(7561), 419-424. https://doi.org/10.1038/nature14622

    Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the USA, 97(8), 4398-4403. doi.org/10.1073/pnas.070039597

    O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175. https://doi.org/10.1016/0006-8993(71)90358-1

    O’Keefe, J. (2014). Nobel Lecture: Spatial cells in the hippocampal formation. https://www.nobelprize.org/uploads/2...fe-lecture.pdf

    Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B., & Moser, E. I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865-1868. doi.org/10.1126/science.1166466

    Taube, J. S., Muller, R. U., & Ranck, J. B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. Journal of Neuroscience, 10(2), 436-447.

    Tulving, E. (1987). Multiple memory systems and consciousness. Human Neurobiology, 6(2), 67-80.

    Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1986). Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience, 6(10), 2950-2967.

    18.4 Synaptic Mechanisms of Long-Term Memory

    Anderson, P. (2007). The Hippocampus Book. Oxford University Press.

    Bliss, T. V., & Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 357-374. doi.org/10.1113/jphysiol.1973.sp010274

    Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331-356. doi.org/10.1113/jphysiol.1973.sp010273

    Collingridge, G. L., Kehl, S. J., & McLennan, H. (1983). The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. Journal of Physiology, 334, 19-31. doi.org/10.1113/jphysiol.1983.sp014477

    Davis, S., Butcher, S. P., & Morris, R. G. (1992). The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. Journal of Neuroscience, 12(1), 21-34. https://doi.org/10.1523/JNEUROSCI.12-01-00021.1992

    Douglas, R. M., & Goddard, G. V. (1975). Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Research, 86(2), 205-215. https://doi.org/10.1016/0006-8993(75)90697-6

    Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399(6731), 66-70. https://doi.org/10.1038/19978

    Frey, U., Krug, M., Reymann, K. G., & Matthies, H. (1988). Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Research, 452(1-2), 57-65. https://doi.org/10.1016/0006-8993(88)90008-x

    Hebb, D.O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York, NY: John Wiley & Sons.

    Kauer, J. A., Malenka, R. C., & Nicoll, R. A. (1988). A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron, 1(10), 911-917. https://doi.org/10.1016/0896-6273(88)90148-1

    Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530), 400-404. https://doi.org/10.1038/375400a0

    Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309(5965), 261-263. https://doi.org/10.1038/309261a0

    Nicholls, R. E., Alarcon, J. M., Malleret, G., Carroll, R. C., Grody, M., Vronskaya, S., & Kandel, E. R. (2008). Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron, 58(1), 104-17. https://doi.org/10.1016/j.neuron.2008.01.039

    Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307(5950), 462-465. https://doi.org/10.1038/307462a0

    Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K., & Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284(5421), 1811-1816. doi.org/10.1126/science.284.5421.1811

    Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., & Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63-9. https://doi.org/10.1038/43432

    Wang, D., Cui, Z., Zeng, Q., Kuang, H., Wang, L. P., Tsien, J. Z., & Cao, X. (2009). Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One, 4(10):e7486. https://doi.org/10.1371/journal.pone.0007486


    This page titled 18.8: References is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?