Skip to main content
Social Sci LibreTexts

1.1: History of Cognitive Psychology

  • Page ID
    91935
    • Wikipedia

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Early thoughts claimed that knowledge was stored in the brain.

    Renaissance and Beyond

    Renaissance philosophers of the 17th century generally agreed with Nativists and even tried to show the structure and functions of the brain graphically. But also empiricist philosophers had very important ideas. According to David Hume, the internal representations of knowledge are formed obeying particular rules. These creations and transformations take effort and time. Actually, this is the basis of much current research in Cognitive Psychology. In the 19th Century Wilhelm Wundt and Franciscus Cornelis Donders made the corresponding experiments measuring the reaction time required for a response, of which further interpretation gave rise to Cognitive Psychology 55 years later.

    20th Century and the Cognitive Revolution

    During the first half of the 20th Century, a radical turn in the investigation of cognition took place. Behaviourists like Burrhus Frederic Skinner claimed that such mental internal operations - such as attention, memory, and thinking – are only hypothetical constructs that cannot be observed or proven. Therefore, Behaviorists asserted, mental constructs are not as important and relevant as the study and experimental analysis of behaviour (directly observable data) in response to some stimulus. According to Watson and Skinner, man could be objectively studied only in this way. The popularity of Behavioralist theory in the psychological world led investigation of mental events and processes to be abandoned for about 50 years.

    In the 1950s scientific interest returned again to attention, memory, images, language processing, thinking and consciousness. The “failure” of Behaviourism heralded a new period in the investigation of cognition, called Cognitive Revolution. This was characterized by a revival of already existing theories and the rise of new ideas such as various communication theories. These theories emerged mainly from the previously created information theory, giving rise to experiments in signal detection and attention in order to form a theoretical and practical understanding of communication.

    Modern linguists suggested new theories on language and grammar structure, which were correlated with cognitive processes. Chomsky’s Generative Grammar and Universal Grammar theory, proposed language hierarchy, and his critique of Skinner’s “Verbal Behaviour” are all milestones in the history of Cognitive Science. Theories of memory and models of its organization gave rise to models of other cognitive processes. Computer science, especially artificial intelligence, re-examined basic theories of problem solving and the processing and storage of memory, language processing and acquisition.

    For clarification: Further discussion on the "behaviorist" history.

    Although the above account reflects the most common version of the rise and fall of behaviorism, it is a misrepresentation. In order to better understand the founding of cognitive psychology it must be understood in an accurate historical context. Theoretical disagreements exist in every science. However, these disagreements should be based on an honest interpretation of the opposing view. There is a general tendency to draw a false equivalence between Skinner and Watson. It is true that Watson rejected the role that mental or conscious events played in the behavior of humans. In hindsight this was an error. However, if we examine the historical context of Watson's position we can better understand why he went to such extremes. He, like many young psychologists of the time, was growing frustrated with the lack of practical progress in psychological science. The focus on consciousness was yielding inconsistent, unreliable and conflicting data. Excited by the progress coming from Pavlov's work with elicited responses and looking to the natural sciences for inspiration, Watson rejected the study of observable mental events and also pushed psychology to study stimulus-response relations as a means to better understand human behavior. This new school of psychology, "behaviorism" became very popular. Skinner's school of thought, although inspired by Watson, takes a very different approach to the study of unobservable mental events. Skinner proposed that the distinction between "mind" and "body" brought with it irreconcilable philosophical baggage. He proposed that the events going on "within the skin", previously referred to as mental events, be called private events. This would bring the private experiences of thinking, reasoning, feeling and such, back into the scientific fold of psychology. However, Skinner proposed that these were things we are doing rather than events going on at a theorized mental place. For Skinner, the question was not of a mental world existing or not, it was whether or not we need to appeal to the existence of a mental world in order to explain the things going on inside our heads. Such as the natural sciences ask whether we need to assume the existence of a creator in order to account for phenomena in the natural world. For Skinner, it was an error for psychologists to point to these private events (mental) events as causes of behavior. Instead, he suggested that these too had to be explained through the study of how one evolves as a matter of experience. For example, we could say that a student studies because she "expects" to do better on an exam if she does. To "expect" might sound like an acceptable explanation for the behavior of studying, however, Skinner would ask why she "expects". The answer to this question would yield the true explanation of why the student is studying. To "expect" is to do something, to behave "in our head", and thus must also be explained.

    The cognitive psychologist Henry Roediger pointed out that many psychologists erroneously subscribe to the version of psychology presented in the first paragraph. He also pointed to the successful rebuttal against Chomsky's review of Verbal behavior. The evidence for the utility in Skinner's book can be seen in the abundance of actionable data it has generated, therapies unmatched by any modern linguistic account of language. Roediger reminded his readers that in fact, we all measure behavior, some simply choose to make more assumptions about its origins than others. He recalls how, even as a cognitive psychologist, he has been the focus of criticism for not making more assumptions about his data. The law of parsimony tells us that when choosing an explanation for a set of data about observable behavior (the data all psychologists collect), we must be careful not to make assumptions beyond those necessary to explain the data. This is where the main division lies between modern day behavior analysts and cognitive psychologists. It is not in the rejection of our private experiences, it is in how these experiences are studied. Behavior analysts study them in relation to our learning history and the brain correlates of that history. They use this information to design environments that change our private experience by changing our interaction with the world. After all, it is through our interaction with our relative world that our private experiences evolve. It is a far cry from the mechanical stimulus-response psychology of John Watson. Academic honesty requires that we make a good faith effort to understand what we wish to criticize. Henry Roediger pointed out that many psychologists understand a very stereotyped, erroneous version of psychology's history. In doing so they miss the many successful real world applications that Skinner's analysis has generated.

    Neuroinformatics, which is based on the natural structure of the human nervous system, tries to build neuronal structures by the idea of artificial neurons. In addition to that, Neuroinformatics is used as a field of evidence for psychological models, for example models for memory. The artificial neuron network “learns” words and behaves like “real” neurons in the brain. If the results of the artificial neuron network are quite similar to the results of real memory experiments, it would support the model. In this way psychological models can be “tested”. Furthermore it would help to build artificial neuron networks, which posses similar skills like the human such as face recognition.

    If more about the ways humans process information was understood, it would be much simpler to build artificial structures, which have the same or similar abilities. The area of cognitive development investigation tried to describe how children develop their cognitive abilities from infancy to adolescence. The theories of knowledge representation were first strongly concerned with sensory inputs. Current scientists claim to have evidence that our internal representation of reality is not a one-to-one reproduction of the physical world. It is rather stored in some abstract or neurochemical code. Tolman, Bartlett, Norman and Rumelhart made some experiments on cognitive mapping. Here, the inner knowledge seemed not only to be related to sensory input, but also to be modified by some kind of knowledge network modeled by past experience.

    Newer methods, like Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have given researchers the possibility to measure brain activity and possibly correlate it to mental states and processes. All these new approaches in the study of human cognition and psychology have defined the field of Cognitive Psychology, a very fascinating field which tries to answer what is quite possibly the most interesting question posed since the dawn of reason. There is still a lot to discover and to answer and to ask again, but first we want to make you more familiar with the concept of Cognitive Psychology.


    This page titled 1.1: History of Cognitive Psychology is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Wikipedia via source content that was edited to the style and standards of the LibreTexts platform.