Skip to main content
Social Sci LibreTexts

2.5: Creative Cognition

  • Page ID
    91999
    • Wikipedia

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We already introduced a lot of ways to solve a problem, mainly strategies that can be used to find the “correct” answer. But there are also problems which do not require a “right answer” to be given – It is time for creative productiveness!

    Imagine you are given three objects – your task is to invent a completely new object that is related to nothing you know. Then try to describe its function and how it could additionally be used. Difficult? Well, you are free to think creatively and will not be at risk to give an incorrect answer. For example think of what can be constructed from a half-sphere, wire and a handle. The result is amazing: a lawn lounger, global earrings, a sled, a water weigher, a portable agitator, ... [2]

    Divergent Thinking

    The term divergent thinking describes a way of thinking that does not lead to one goal, but is open-ended. Problems that are solved this way can have a large number of potential 'solutions' of which none is exactly 'right' or 'wrong', though some might be more suitable than others.

    Solving a problem like this involves indirect and productive thinking and is mostly very helpful when somebody faces an ill-definedproblem, i.e. when either initial state or goal state cannot be stated clearly and operators or either insufficient or not given at all.

    The process of divergent thinking is often associated with creativity, and it undoubtedly leads to many creative ideas. Nevertheless, researches have shown that there is only modest correlation between performance on divergent thinking tasks and other measures of creativity. Additionally it was found that in processes resulting in original and practical inventions things like searching for solutions, being aware of structures and looking for analogies are heavily involved, too.

    Thus, divergent thinking alone is not an appropriate tool for making an invention. You also need to analyse the problem in order to make the suggested, i.e. invention, solution appropriate.

    right or wrong

    The ability of children to imitate the people and the surrounding environment also influential in recognizing the concepts of right and wrong To introduce the concepts of right and wrong must be seen from the age of the child. When children are a year old, their brains are not fully developed so their understanding is still limited. But keep in mind, too, from an early age the average child is able to imitate parents, see their surroundings and do imitation or called modeling. Therefore, the introduction of the concept of right and wrong also depends on how the parents or other adults live with the child. "If a mother often sits on the couch while raising both legs, children tend to sit with more or less the same style and think this is true. As we get older, modeling is the most natural thing that children can get about right and wrong," said this psychologist called Kiki. The method of giving understanding about the concepts of right and wrong is also adjusted to the age of the child. If children are still toddlers, they can go through activities such as telling stories that are rich in social values. Slip conclusions at the end of a fairy tale. "For example, the Kancil tale, after storytelling parents can say, 'So, stealing is not good', to emphasize the moral message in the fairy tale," said the psychologist from the Indonesian Psychological Practice Foundation, Bintaro, South Jakarta. For children who are older, for example in primary school age and still under 12 years of age, understanding can be given by giving an explanation of their eyes. Because the nature of them still tends to be egocentric. However, when entering adolescence, giving an explanation can be through a general perspective, especially cause and effect. "When giving to tell children about the concepts of right and wrong, parents need to pay attention to whether the child really understands the message that was delivered as a whole or only part of the contents of the message," Kiki added. For example, when parents want to teach the concept of stealing is not good through the story of Kancil, parents must make sure the child understands that anyone should not steal, no matter what the circumstances. Do not let the child who understands that is not allowed to steal a mouse deer or that should not be stolen is cucumber. Therefore, ask the child to explain his understanding once more so that the child is sure to understand. Responsible Learning If you have been taught the concept of right and wrong, but the child still violates it, parents must act and the child needs to know the consequences of the wrong actions. "For example, it was explained that you should not pick rambutan from a neighboring tree, but the child still did it, immediately reprimanded firmly and words that were not ambiguous or ambiguous, but still polite. "However, the child must be responsible for his attitude," Kiki reminded. Of course, continued Kiki, all this depends on the age of the child. In a small age for certain things, it is better for parents to stay with children, but when they are older, children need to know that parents will not risk their mistakes. Children who from childhood have understood between right and wrong will grow into individuals who are independent, responsible and well-mannered. This will also make it easier for them to socialize in their environment, have healthy friendships and make it easier for them to get good jobs because employers and coworkers certainly want to work with people who are polite, honest and responsible. Important to remember The following basic things can be done by parents to instill in children the right behavior - To say thanks - Say a word please if you want to ask for help - apologize if wrong, even to the child if the parents are wrong - Say greetings

    Convergent Thinking

    Convergent thinking patterns are problem solving techniques that unite different ideas or fields to find a solution. The focus of this mindset is speed, logic and accuracy, also identification of facts, reapplying existing techniques, gathering information. The most important factor of this mindset is: there is only one correct answer. You only think of two answers, namely right or wrong. This type of thinking is associated with certain science or standard procedures. People with this type of thinking have logical thinking, are able to memorize patterns, solve problems and work on scientific tests. Most school subjects sharpen this type of thinking ability.

    Research shows that the creative process involves both types of thought processes. But experts recommend not joining the two processes in one session. For example, in the next 30 minutes, you invite everyone on your team to brainstorm creating new ideas (which involve divergent thinking patterns). Within 30 minutes, all ideas should only be recorded, not judged, for example by saying that an idea is irrelevant because of a limited budget. After all the ideas are contained, go to the next session, namely analysis and decision making (which involves convergent thinking patterns). Based on research too, doing creative jobs causes mood swings (mood swings), and it turns out that both types of thinking create two different moods. Convergent thinking patterns create negative moods, while divergent thinking patterns create a positive mood. J.A. Research Horne in 1988 revealed that lack of sleep will greatly affect the performance of people with divergent thought patterns, whereas people with convergent mindsets will be more likely to be fine. Including which mindset do you have? Use wisely your talents, and practice both types of thinking to be able to use them in balance at the right times.


    This page titled 2.5: Creative Cognition is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Wikipedia via source content that was edited to the style and standards of the LibreTexts platform.