Skip to main content
Social Sci LibreTexts

5.3: Emotions

  • Page ID
    • Wikipedia
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)


    In contrast to previous research, modern brain based neuroscience has taken a more serviceable approach to the field of Emotions, because emotions definitely are brain related processes which deserve scientific study, whatever their purpose may be.

    One interpretation regards emotions as „action schemes“, which especially lead to a certain behaviour which is essential for survival. It is important to distinguish between conscious aspects of emotion like subjective - often bodily - feelings, as well as unconscious aspects like the detection of a threat. This will be discussed later on in conjunction with awareness of emotion. It is also important to differentiate between a mood and an emotion. A mood refers to a situation where an emotion occurs frequently or continuously. As an example: Fear is an emotion, anxiety is a mood.

    The first question which arises is how to categorise emotions. They could be treated as a single entity, but perhaps it could even make more sense to distinguish between them, which leads to the question if some emotions like happiness or anger are more basic than other types like jealousy or love and if emotions are dependent on culture and/or language.

    One of the most influential ethnographic studies by Eckman and Friesen, which is based on the comparison of facial expressions of emotions in different cultures, concluded that there are six basic types of emotions expressed in faces - namely sadness, happiness, disgust, surprise, anger and fear, independent from culture and language. An alternative approach is to differentiate between emotions not by categorising but rather by measuring the intensity of an emotion by imposing different dimensions, e.g. their valence and their arousal. If this theory would be true then one might expect to find different brain regions which selectivey process positive or negative emotions.


    Six basic types of emotions expressed in faces

    Complex emotions like jealousy, love and pride are different from basic emotions as they comprehend awareness of oneself in relation to other people and one's attitude towards other people. Hence they come along with a more complex attributional process which is required to appreciate thoughts and beliefs of other people. Complex emotions are more likely be dependent on cultural influences than basic types of emotions. If you think of Knut who is feeling embarrassment, you have to consider what kind of action he committed in which situation and how this action raised the disapproval of other people.

    Awareness and Emotion

    Awareness is closely connected with changes in the environment or in the psycho-physiological state. Why recognise changes rather than stable states? An answer could be that changes are an important indicator of our situation. They show that our situation is unstable. Paying attention or focusing on that might increase the chance to survive. A change bears more information than repetitive events. This appears more exciting. Repetition reduces excitement. If we think that we got the most important information from a situation or an event,we become unaware of such an event or certain facts.

    Current research in this field suggest that changes are needed to emerge emotions,so we can say that it is strong attention dependent. The event has to draw our attention. No recognition, no emotions. But do we have always an emotional evaluation, when we are aware of certain events? How has the change to be relevant for our recognition? Emotional changes are highly personal significant, saying that it needs a relation to our personal self.

    Significance presupposes order and relations. Relations are to meaning as colours are to vision: a necessary condition, but not its whole content. One determines the significance and the scope of a change by f.e. event´s impact (event´s strength), reality, relevance and factors related to the background circumstances of the subject. We feel no emotion in response to change which we perceive as unimportant or unrelated. Roughly one can say that emotions express our attitude toward unstable significant objects which are somehow related to us.

    This is also always connected with the fact that we have greater response to novel experience. Something that is unexpected or unseen yet. When children get new toys, they are very excited at first, but after a while one can perceive, or simply remember their own childhood, that they show less interest in that toy. That shows, that emotional response declines during time. This aspect is called the process of adaptation. The threshold of awareness keeps rising if stimulus level is constant. Hence, awareness decreases. The organism withdraws its consciousness from more and more events. The person has the pip, it has enough. The opposite effect is also possible. It is known as the process of facilitation. In this case the threshold of awareness diminishes.

    Consciousness is focusing on increasing number of events. This happens if new stimuli are encountered. The process of adaptation might prevent us from endlessly repetitive actions. A human would not be able to learn something new or be caught in an infinite loop. The emotional environment contains not only what is, and what will be, experienced but also all that could be, or that one desires to be, experienced; for the emotional system, all such possibilities are posited as simultaneously there and are compared with each other.

    Whereas intellectual thinking expresses a detached and objective manner of comparison, the emotional comparison is done from a personal and interested perspective; intellectual thinking may be characterised as an attempt to overcome the personal emotional perspective. It is quite difficult to give an external description of something that is related to an intrinsic, personal perspective. But it is possible. In the following the most popular theories will be shown, and an rough overview about the neural substrates of emotions.

    The Neural Correlate of Emotion

    Papez Circuit

    James W. Papez was the investigator of the Papez Circuit theory (1937). He was the first who tried to explain emotions in a neurofuncional way. Papez discovered the circuit after injecting the rabing-virus into a cat's hippocampus andobserved its effects on the brain. The Papez circuit is chiefly involved in the cortical control of emotion. The corpus mamillare (part of the hypothalamus) plays a central role. The Papez Circuit involves several regions in the brain with the following course:

    ● The hippocampus projects to fornix and via this to corpus mamillare

    ● from here neurons project via the fasciculus mamillothalamicus to nucleus anterior of the thalamus and then to the gyrus cinguli

    ● due to the connection of gyrus cinguli and hippocampus the circuit is closed.

    1949 Paul MacLean extended this theory by hypothezing that regions like the amygdala and the orbitofrontal cortex work together with the circuit and form an emotional brain. However, the theory of the Papez circuit could no longer be held because, for one, some regions of the circuit can no longer be related to functions to which they were ascribed primarily. And secondly, current state of research concludes that each basic emotion has its own circuit. Furthermore, the assumption that the limbic system is solely responsible for these functions is out-dated. Other cortical and non-cortical structures of the brain have an enormous bearing on the limbic system. So the emergence of emotion is always an interaction of many parts of the brain.

    Amygdala and Fear

    The Amygdala (lat. Almond), latinic-anatomic Corpus amygdaloideum, is located in the left and right temporal lobe. It belongs to the limbic system and is essentially involved in the emergence of fear. In addition, the amygdala plays a decisive role in the emotional evaluation and recognition of situations as well as in the analysis of potential threat. It handles external stimuli and induces vegetative reactions. These may help prepare the body for fight and flight by increasing heart and breathing-rate. The small mass of grey matter is also responsible for learning on the basis of reward or punishment. If the two parts of the amygdala are destroyed the person loses their sensation of fear and anger. Experiments with patients whose amygdala is damaged show the following: The participants were impaired to a lesser degree with recognizing facial anger and disgust. They could not match pictures of the same person when the expressions were different. Beyond Winston, O´Doherty and Dolan report that the amygdala activation was independent of whether or not subjects engaged in incidental viewing or explicit emotion judgements. However, other regions (including the ventromedial frontal lobes) were activated only when making explicit judgements about the emotion. This was interpreted as reinstatement of the „feeling“ of the emotion. Further studies show that there is a slow route to the amygdala via the primary visual cortex and a fast subcortical route from the thalamus to the amygdala. The amygdala is activated by unconscious fearful expressions in healthy participants and also „blindsight“ patients with damage to primary visual cortex. The fast route is imprecise and induces fast unconscious reactions towards a threat before you consciously notice and may properly react via the slow route. This was shown by experiments with persons who have a snake phobia (ophidiophobics) or a spider phobia (arachnophobics). When they get to see a snake, the former showed a bodily reaction, before they reported seeing the snake. A similar reaction was not observable in the case of a spiderphobia. By experiments with spiders the results were the other way round.

    Recognition of Other Emotional Categories

    Another basic emotional category which is largely independent of other emotions is disgust. It literally means „bad taste“ and is evolutionary related to contamination through ingestion. Patients with the Huntington's disease have problems with recognizing disgust. The insula, a small region of cortex buried beneath the temporal lobes, plays an important role for facial expressions of disgust. Furthermore, the half of the patients with a damaged amygdala have problems with facial expressions of sadness. The damage of the ventral regions of the basal ganglia causes the deficit in the selective perception of anger and this brain area could be responsible for the perception of aggression. Happiness cannot be selectively impaired because it consist of a more distributed network.

    Functional Theories

    In order to explain human emotions, that means to discover how they arise and investigate how they are represented in the brain, researchers worked out several theories. In the following the most important views will be discussed

    James – Lange Theory

    The James – Lange theory of emotion states that the self – perception of bodily changes produces emotional experience. For example you are happy because you are laughing or you feel sad because you are crying. Alternatively, when a person sees a spider he or she might experience fear. One problem according this theory is that it is not clear what kind of processing leads to the changes in the bodily state and wether this process can be seen as a part of the emotion itself. However, people paralyzed from the neck down, who have little awareness of sensory input are still able to experience emotions. Also, research by Schacter and Singer has shown, that changes in bodily state are not enough to produce emotions. Because of that, an extension of this theory was necessary.

    Two Factor Theory

    The two factor theory views emotion as an compound of the two factors: physiological arousal and cognition. Schacter and Singer (1962) did well-known studies in this field of research. They injected participants with adrenaline (called epinephrine in the USA). This is a drug that causes a number of effects like increased blood flow to the muscles and increased heart rate. The result was that the existence of the drug in the body did not lead to experiences of emotion. Just with the presence of an cognitive setting, like an angry man in the room, participants did self – report an emotion. Contrary to the James – Lange theory this study suggests that bodily changes can only support conscious emotional experiences but do not create emotions. Therefore, the interpretation of a certain emotion depends on the physiological state in correlation to the subjects circumstances.

    Wikipedia has related information at Two factor theory

    Somatic Marker Hypothesis

    This current theory of emotions (from A. Damasio) emphasizes the role of bodily states and implies that “somatic marker” signals have influence on behaviour, like particularly reasoning and decision–making. Somatic markers are the connections between previous situations, which are stored in the cortex, and the bodily feeling of such situations (e.g. stored in the amygdala). From this it follows, that the somatic markers are very useful during the decision process, because they can give you immediate response on the grounds of previous acquired knowledge, whether the one or the other option “feels” better. People who are cheating and murdering without feeling anything miss somatic markers which would prevent them from doing this.

    In order to investigate this hypothesis a gambling task was necessary. There have been four decks of cards (A, B, C, D) on the table and the participants had to take always one in turn. On the other side of the card was either a monetary penalty or gain. The players have been told that they must play so that they win the most. Playing from decks A and B leads to a loss of money whereas choosing decks C and D leads to gain. Persons without a brain lesion learned to avoid deck A and B but players with such damage did not.

    Reading Minds

    Empathy is the ability to appreciate others’ emotions and their point of view. Simulation theory states that the same neural and cognitive resources are used by perceiving the emotional expressions of others and by producing actions and this expressions in oneself. If you are watching a movie where one person touches another, the same neural mechanism (in the somatosensory cortex) is activated as if you were physically touched. Further studies investigated empathy for pain. That means, if you see someone experiencing pain, two regions in your brain are overlapping. The first region is responsible for expecting another person’s pain, and the second region is responsible for experiencing this pain oneself.

    Mood and Memory

    While we store a memory, we not only record all sensory data, we also store our mood and emotional state. Our current mood thus will affect the memories that are most effortlessly available to us, such that when we are in a good mood we recollect good memories (and vice versa). While the nature of memory is associative this also means that we tend to store happy memories in a linked set. There are two different ways we remember past events:


    Memory occurs where current mood helps recall of mood-congruent material, e.g. characters in stories that feel like the reader feels while reading, regardless of our mood at the time the material was stored. Thus when we are happy, we are more likely to remember happy events. Also remembering all of the negative events of our past when depressed is an example of mood congruence. That means that you can rather remember a funeral where you were happy in a happy mood while you remember a party where you were sad in a sad mood, although a funeral is sad and a party is happy.


    Memory occurs where the congruence of current mood with the mood at the time of memory storage helps recall of that memory. When we are happy, we are more likely to remember other times when we were happy. So, if you want to remember something, get into the mood you were in when you experienced it. You can easily try this yourself. You just have to bring into a certain mood by listening to the saddest/happiest music you know. Now you learn a list of words. Then you try to recall the list in the other/the same mood. You will see that you remember the list better when you are in the same mood as you were while learning it.

    This page titled 5.3: Emotions is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Wikipedia via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?