# 11.3: Multidimensionality of Situation Models

• Wikipedia

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### Space

Very often, objects that are spatially close to us are more relevant than more distant objects. Therefore, one would expect the same for situation models. consistent with this idea, comprehenders are slower to recognise words denoting objects distant from a protagonist than those denoting objects close to the protagonist (Glenberg, Meyer & Lindem, 1987).

When comprehenders have extensive knowledge of the spatial layout of the setting of the story (e.g., a building), they update their representations according to the location and goals of the protagonist. They have the fastest mental access to the room that the protagonist is currently in or is heading to. For example, they can more readily say whether or not two objects are in the same room if the room mentioned is one of these rooms than if it is some other room in the building (e.g., Morrow, Greenspan, & Bower, 1987). This makes perfect sense intuitively because these are the rooms that would be relevant to us if we were in the situation.

People’s interpretation of the meaning of a verb denoting movement of people or objects in space, such as to approach, depends on their situation models. For example, comprehenders interpret the meaning of approach differently in The tractor is just approaching the fence than in The mouse is just approaching the fence. Specifically, they interpret the distance between the figure and the landmark as being longer when the figure is large (tractor) compared with when it is small (mouse). The comprehenders’ interpretation also depends on the size of the landmark and the speed of the figure (Morrow & Clark, 1988). Apparently, comprehenders behave as if they are actually standing in the situation, looking at the tractor or mouse approaching a fence.

### Time

We assume by default that events are narrated in their chronological order, with nothing left out. Presumably this assumption exists because this is how we experience events in everyday life. Events occur to us in a continuous flow, sometimes in close succession, sometimes in parallel, and often partially overlapping. Language allows us to deviate from chronological order, however. For example, we can say, “Before the psychologist submitted the manuscript, the journal changed its policy.” The psychologist submitting the manuscript is reported first, even though it was the last of the two events to occur. If people construct a situation model, this sentence should be more difficult to process than its chronological counterpart (the same sentence, but beginning with “After”). Recent neuroscientific evidence supports this prediction. Event-related brain potential (ERP) measurements indicate that “before” sentences elicit, within 300 ms, greater negativity than “after” sentences. This difference in potential is primarily located in the left anterior part of the brain and is indicative of greater cognitive effort (Münte, Schiltz, & Kutas, 1998). In real life, events follow each other seamlessly. However, narratives can have temporal discontinuities, when writers omit events not relevant to the plot. Such temporal gaps, typically signalled by phrases such as a few days later, are quite common in narratives. Nonetheless, they present a departure from everyday experience. Therefore, time shifts should lead to (minor) disruptions of the comprehension process. And they do. Reading times for sentences that introduce a time shift tend to be longer than those for sentences that do not (Zwaan, 1996).

All other things being equal, events that happened just recently are more accessible to us than events that happened a while ago.
Thus, in a situation model, enter should be less accessible after An hour ago, John entered the building than after A moment ago, John entered the building.
Recent probe-word recognition experiments support this prediction (e.g., Zwaan, 1996).


### Causation

As we interact with the environment, we have a strong tendency to interpret event sequences as causal sequences. It is important to note that, just as we infer the goals of a protagonist, we have to infer causality; we cannot perceive it directly. Singer and his colleagues (e.g., Singer, Halldorson, Lear, & Andrusiak, 1992) have investigated how readers use their world knowledge to validate causal connections between narrated events. Subjects read sentence pairs, such as 1a and then 1b or 1a’ and then 1b, and were subsequently presented with a question like 1c:

(1a) Mark poured the bucket of water on the bonfire.

(1a’) Mark placed the bucket of water by the bonfire.

(1b) The bonfire went out.

(1c) Does water extinguish fire?

Subjects were faster in responding to 1c after the sequence 1a-1b than after 1a’-1b. According to Singer, the reason for the speed difference is that the knowledge that water extinguishes fire was activated to validate the events described in 1a-1b. However, because this knowledge cannot be used to validate 1a’-1b, it was not activated when subjects read that sentence pair.

### Intentionality

We are often able to predict people’s future actions by inferring their intentionality, i.e. their goals. For example, when we see a man walking over to a chair, we assume that he wants to sit, especially when he has been standing for a long time. Thus, we might generate the inference “He is going to sit.” Keefe and McDaniel (1993) presented subjects with sentences like After standing through the 3-hr debate, the tired speaker walked over to his chair (and sat down) and then with probe words (e.g., sat, in this case). Subjects took about the same amount of time to name sat when the clause about the speaker sitting down was omitted and when it was included. Moreover, naming times were significantly faster in both of these conditions than in a control condition in which it was implied that the speaker remained standing.

### Protagonists and Objects

Comprehenders are quick to make inferences about protagonists, presumably in an attempt to construct a more complete situation model. Consider, for example, what happens after subjects read the sentence The electrician examined the light fitting. If the following sentence is She took out her screwdriver, their reading speed is slowed down compared with when the second sentence is He took out his screwdriver. This happens because she provides a mismatch with the stereotypical gender of an electrician, which the subjects apparently inferred while reading the first sentence (Carreiras, Garnham, Oakhill, & Cain, 1996).

Comprehenders also make inferences about the emotional states of characters.
For example, if we read a story about Paul, who wants his brother Luke to be good in baseball, the concept of “pride” becomes activated in our mind when we read
that Luke receives the Most Valuable Player Award (Gernsbacher, Goldsmith, & Robertson, 1992).
Thus, just as in real life, we make inferences about people’s emotions when we comprehend stories.

This page titled 11.3: Multidimensionality of Situation Models is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Wikipedia via source content that was edited to the style and standards of the LibreTexts platform.