Skip to main content
Social Sci LibreTexts

6.2: The Classical Nature of Classical Music

  • Page ID
    21236
  • There are many striking parallels between the classical mind and classical music, particularly the music composed in the Austro-German tradition of the eighteenth and nineteenth centuries. First, both rely heavily upon formal structures. Second, both emphasize that their formal structures are content laden. Third, both attribute great importance to abstract thought inside an agent (or composer) at the expense of contributions involving the agent’s environment or embodiment. Fourth, both emphasize central control. Fifth, the “classical” traditions of both mind and music have faced strong challenges, and many of the challenges in one domain can be related to analogous challenges in the other.

    The purpose of this section is to elaborate the parallels noted above between classical music and classical cognitive science. One reason to do so is to begin to illustrate the analogy that classical cognitive science is like classical music. However, a more important reason is that this analogy, at least tacitly, has a tremendous effect on how researchers approach musical cognition. The methodological implications of this analogy are considered in detail later in this chapter.

    To begin, let us consider how the notions of formalism or logicism serve as links between classical cognitive science and classical music. Classical cognitive science takes thinking to be the rule-governed manipulation of mental representations. Rules are sensitive to the form of mental symbols (Haugeland, 1985). That is, a symbol’s form is used to identify it as being a token of a particular type; to be so identified means that only certain rules can be applied. While the rules are sensitive to the formal nature of symbols, they act in such a way to preserve the meaning of the information that the symbols represent. This property reflects classical cognitive science’s logicism: the laws of thought are equivalent to the formal rules that define a system of logic (Boole, 2003). The goal of characterizing thought purely in the form of logical rules has been called the Boolean dream (Hofstadter, 1995).

    It is not implausible that the Boolean dream might also characterize conceptions of music. Music’s formal nature extends far beyond musical symbols on a sheet of staff paper. Since the time of Pythagoras, scholars have understood that music reflects regularities that are intrinsically mathematical (Ferguson, 2008). There is an extensive literature on the mathematical nature of music (Assayag et al., 2002; Benson, 2007; Harkleroad, 2006). For instance, different approaches to tuning instruments reflect the extent to which tunings are deemed mathematically sensible (Isacoff, 2001).

    To elaborate, some pairs of tones played simultaneously are pleasing to the ear, such as a pair of notes that are a perfect fifth apart (see Figure 4-10)—they are consonant—while other combinations are not (Krumhansl, 1990). The consonance of notes can be explained by the physics of sound waves (Helmholtz & Ellis, 1954). Such physical relationships are ultimately mathematical, because they concern ratios of frequencies of sine waves. Consonant tone pairs have frequency ratios of 2:1 (octave), 3:2 (perfect fifth), and 4:3 (perfect fourth). The most dissonant pair of tones, the tritone (an augmented fourth) is defined by a ratio that includes an irrational number (√2:1), a fact that was probably known to the Pythagoreans.

    The formal nature of music extends far beyond the physics of sound. There are formal descriptions of musical elements, and of entire musical compositions, that are analogous to the syntax of linguistics (Chomsky, 1965). Some researchers have employed generative grammars to express these regularities (Lerdahl & Jackendoff, 1983; Steedman, 1984).

    For instance, Lerdahl and Jackendoff (1983) argued that listeners impose a hierarchical structure on music, organizing “the sound signals into units such as motives, themes, phrases, periods, theme-groups, sections and the piece itself” (p. 12). They defined a set of well-formedness rules, which are directly analogous to generative rules in linguistics, to define how this musical organization proceeds and to rule out impossible organizations.

    That classical music is expected to have a hierarchically organized, well-formed structure is a long-established view amongst scholars who do not use generative grammars to capture such regularities. Composer Aaron Copland (1939, p. 113) argued that a composition’s structure is “one of the principal things to listen for” because it is “the planned design that binds an entire composition together.”

    One important musical structure is the sonata-allegro form (Copland, 1939), which is a hierarchical organization of musical themes or ideas. At the top level of this hierarchy are three different components that are presented in sequence: an initial exposition of melodic structures called musical themes, followed by the free development of these themes, and finishing with their recapitulation. Each of these segments is itself composed of three sub-segments, which are again presented in sequence. This structure is formal in the sense that the relationship between different themes presented in different sub-segments is defined in terms of their key signatures.

    For instance, the exposition uses its first sub-segment to introduce an opening theme in the tonic key, that is, the initial key signature of the piece. The exposition’s second sub-segment then presents a second theme in the dominant key, a perfect fifth above the tonic. The final sub-segment of the exposition finishes with a closing theme in the dominant key. The recapitulation has a substructure that is related to that of the exposition; it uses the same three themes in the same order, but all are presented in the tonic key. The development section, which falls between the exposition and the recapitulation, explores the exposition’s themes, but does so using new material written in different keys.

    Sonata-allegro form foreshadowed the modern symphony and produced a market for purely instrumental music (Rosen, 1988). Importantly, it also provided a structure, shared by both composers and their audiences, which permitted instrumental music to be expressive. Rosen notes that the sonata became popular because it,

    has an identifiable climax, a point of maximum tension to which the first part of the work leads and which is symmetrically resolved. It is a closed form, without the static frame of ternary form; it has a dynamic closure analogous to the denouement of 18th century drama, in which everything is resolved, all loose ends are tied up, and the work rounded off. (Rosen, 1988, p. 10)

    In short, the sonata-allegro form provided a logical structure that permitted the music to be meaningful.

    The idea that musical form is essential to communicating musical meaning brings us to the second parallel between classical music and classical cognitive science: both domains presume that their formal structures are content-bearing.

    Classical cognitive science explains cognition by invoking the intentional stance (Dennett, 1987), which is equivalent to relying on a cognitive vocabulary (Pylyshyn, 1984). If one assumes that an agent has certain intentional states (e.g., beliefs, desires, goals) and that lawful regularities (such as the principle of rationality) govern relationships between the contents of these states, then one can use the contents to predict future behavior. “This single assumption [rationality], in combination with home truths about our needs, capacities and typical circumstances, generates both an intentional interpretation of us as believers and desirers and actual predictions of behavior in great profusion” (Dennett, 1987, p. 50). Similarly, Pylyshyn (1984, pp. 20–21) noted that “the principle of rationality . . . is indispensable for giving an account of human behavior.”

    Is there any sense in which the intentional stance can be applied to classical music? Classical composers are certainly of the opinion that music can express ideas. Copland noted that,

    my own belief is that all music has an expressive power, some more and some less, but that all music has a certain meaning behind the notes and that that meaning behind the notes constitutes, after all, what the piece is saying, what the piece is about. (Copland, 1939, p. 12)

    John Cage (1961) believed that compositions had intended meanings:

    It seemed to me that composers knew what they were doing, and that the experiments that had been made had taken place prior to the finished works, just as sketches are made before paintings and rehearsals precede performances. (John Cage, 1961, p. 7)

    Scholars, too, have debated the ability of music to convey meanings. One of the central questions in the philosophy of music is whether music can represent. As late as 1790, the dominant philosophical view of music was that it was incapable of conveying ideas, but by the time that E. T. A. Hoffman reviewed Beethoven’s Fifth Symphony in 1810, this view was predominately rejected (Bonds, 2006), although the autonomist school of musical aesthetics—which rejected musical representation—was active in the late nineteenth century (Hanslick, 1957). Nowadays most philosophers of music agree that music is representational, and they focus their attention on how musical representations are possible (Kivy, 1991; Meyer, 1956; Robinson, 1994, 1997; Sparshoot, 1994; Walton, 1994).

    How might composers communicate intended meanings with their music? One answer is by exploiting particular musical forms. Conventions such as sonata-allegro form provide a structure that generates expectations, expectations that are often presumed to be shared by the audience. Copland (1939) used his book about listening to music to educate audiences about musical forms so that they could better understand his compositions as well as those of others: “In helping others to hear music more intelligently, [the composer] is working toward the spread of a musical culture, which in the end will affect the understanding of his own creations” (p. vi).

    The extent to which the audience’s expectations are toyed with, and ultimately fulfilled, can manipulate its interpretation of a musical performance. Some scholars have argued that these manipulations can be described completely in terms of the structure of musical elements (Meyer, 1956). The formalist’s motto of classical cognitive science (Haugeland, 1985) can plausibly be applied to classical music.

    A third parallel between classical cognitive science, which likely follows directly from the assumption that formal structures can represent content, is an emphasis on Cartesian disembodiment. Let us now consider this characteristic in more detail.

    Classical cognitive science attempts to explain cognitive phenomena by appealing to a sense-think-act cycle (Pfeifer & Scheier, 1999). In this cycle, sensing mechanisms provide information about the world, and acting mechanisms produce behaviors that might change it. Thinking, considered as the manipulation of mental representations, is the interface between sensing and acting (Wilson, 2004). However, this interface, internal thinking, receives the most emphasis in a classical theory, with an accompanying underemphasis on sensing and acting (Clark, 1997).

    One can easily find evidence for the classical emphasis on representations. Autonomous robots that were developed following classical ideas devote most of their computational resources to using internal representations of the external world (Brooks, 2002; Moravec, 1999; Nilsson, 1984). Most survey books on cognitive psychology (Anderson, 1985; Best, 1995; Haberlandt, 1994; Robinson-Riegler & Robinson-Riegler, 2003; Solso, 1995; Sternberg, 1996) have multiple chapters on representational topics such as memory and reasoning and rarely mention embodiment, sensing, or acting. Classical cognitive science’s sensitivity to the multiple realization argument (Fodor, 1968b, 1975), with its accompanying focus on functional (not physical) accounts of cognition (Cummins, 1983), underlines its view of thinking as a disembodied process. It was argued in Chapter 3 that the classical notion of the disembodied mind was a consequence of its being inspired by Cartesian philosophy.

    Interestingly, a composer of classical music is also characterized as being similarly engaged in a process that is abstract, rational, and disembodied. Does not a composer first think of a theme or a melody and then translate this mental representation into a musical score? Mozart “carried his compositions around in his head for days before setting them down on paper” (Hildesheimer, 1983). Benson (2007, p. 25) noted that “Stravinsky speaks of a musical work as being ‘the fruit of study, reasoning, and calculation that imply exactly the converse of improvisation.’” In short, abstract thinking seems to be a prerequisite for composing.

    Reactions against Austro-German classical music (Nyman, 1999) were reactions against its severe rationality. John Cage pioneered this reaction (Griffiths, 1994); beginning in the 1950s, Cage increasingly used chance mechanisms to determine musical events. He advocated “that music should no longer be conceived of as rational discourse” (Nyman, 1999, p. 32). He explicitly attacked the logicism of traditional music (Ross, 2007), declaring that “any composing strategy which is wholly ‘rational’ is irrational in the extreme” (p. 371).

    Despite opposition such as Cage’s, the disembodied rationality of classical music was one of its key features. Indeed, the cognitive scaffolding of composing is frowned upon. There is a general prejudice against composers who rely on external aids (Rosen, 2002). Copland (1939, p. 22) observed that “a current idea exists that there is something shameful about writing a piece of music at the piano.” Rosen traces this idea to Giovanni Maria Artusi’s criticism of composers such as Monteverdi, in 1600: “It is one thing to search with voices and instruments for something pertaining to the harmonic faculty, another to arrive at the exact truth by means of reasons seconded by the ear” (p. 17). The expectation (then and now) is that composing a piece involves “mentally planning it by logic, rules, and traditional reason” (Rosen, 2002, p. 17). This expectation is completely consistent with the disembodied, classical view of thinking, which assumes that the primary purpose of cognition is not acting, but is instead planning.

    Planning has been described as solving the problem of what to do next (Dawson, 1998; Stillings, 1995). A solution to this problem involves providing an account of the control system of a planning agent; such accounts are critical components of classical cognitive science. “An adequate theory of human cognitive processes must include a description of the control system—the mechanism that determines the sequence in which operations will be performed” (Simon, 1979, p. 370). In classical cognitive science, such control is typically central. The notion of central control is also characteristic of classical music, providing the fourth parallel between classical cognitive science and classical music.

    Within the Austro-German musical tradition, a composition is a formal structure intended to express ideas. A composer uses musical notation to signify the musical events which, when realized, accomplish this expressive goal. An orchestra’s purpose is to bring the score to life, in order for the performance to deliver the intended message to the audience:

    We tend to see both the score and the performance primarily as vehicles for preserving what the composer has created. We assume that musical scores provide a permanent record or embodiment in signs; in effect, a score serves to ‘fix’ or objectify a musical work. (Benson, 2003, p. 9)

    However, a musical score is vague; it cannot determine every minute detail of a performance (Benson, 2003; Copland, 1939). As a result, during a performance the score must be interpreted in such a way that the missing details can be filled in without distorting the composer’s desired effect. In the Austro-German tradition of music, an orchestra’s conductor takes the role of interpreter and controls the orchestra in order to deliver the composer’s message (Green & Malko, 1975, p. 7): “The conductor acts as a guide, a solver of problems, a decision maker. His guidance chart is the composer’s score; his job, to animate the score, to make it come alive, to bring it into audible being.”

    The conductor provides another link between classical music and classical cognitive science, because the conductor is the orchestra’s central control system. The individual players are expected to submit to the conductor’s control.

    Our conception of the role of a classical musician is far closer to that of self-effacing servant who faithfully serves the score of the composer. Admittedly, performers are given a certain degree of leeway; but the unwritten rules of the game are such that this leeway is relatively small and must be kept in careful check. (Benson, 2003, p. 5)

    It has been suggested—not necessarily validly—that professional, classically trained musicians are incapable of improvisation (Bailey, 1992)!

    The conductor is not the only controller of a performance. While it is unavoidably vague, the musical score also serves to control the musical events generated by an orchestra. If the score is a content-bearing formal expression, then it is reasonable to assume that it designates the contents that the score is literally about. Benson (2003) described this aspect of a score as follows:

    The idea of being ‘treu’—which can be translated as true or a faithful—implies faithfulness to someone or something. Werktreue, then, is directly a kind of faithfulness to the Werk (work) and, indirectly, a faithfulness to the composer. Given the centrality of musical notation in the discourse of classical music, a parallel notion is that of Texttreue: fidelity to the written score. (Benson, 2003, p. 5)

    Note Benson’s emphasis on the formal notation of the score. It highlighted the idea that the written score is analogous to a logical expression, and that converting it into the musical events that the score is about (in Brentano’s sense) is not only desirable, but also rational. This logicism of classical music perfectly parallels the logicism found in classical cognitive science.

    The role of the score as a source of control provides a link back to another issue discussed earlier, disembodiment. We saw in Chapter 3 that the disembodiment of modern classical cognitive science is reflected in its methodological solipsism. In methodological solipsism, representational states are individuated from one another only in terms of their relations to other representational states. Relations of the states to the external world—the agent’s environment—are not considered.

    It is methodological solipsism that links a score’s control back to disembodiment, providing another link in the analogy between the classical mind and classical music. When a piece is performed, it is brought to life with the intent of delivering a particular message to the audience. Ultimately, then, the audience is a fundamental component of a composition’s environment. To what extent does this environment affect or determine the composition itself?

    In traditional classical music, the audience is presumed to have absolutely no effect on the composition. Composer Arnold Schoenberg believed that the audience was “merely an acoustic necessity—and an annoying one at that” (Benson, 2003, p. 14). Composer Virgil Thompson defined the ideal listener as “a person who applauds vigorously” (Copland, 1939, p. 252). In short, the purpose of the audience is to passively receive the intended message. It too is under the control of the score:

    The intelligent listener must be prepared to increase his awareness of the musical material and what happens to it. He must hear the melodies, the rhythms, the harmonies, the tone colors in a more conscious fashion. But above all he must, in order to follow the line of the composer’s thought, know something of the principles of musical form. (Copland, 1939, p. 17)

    To see that this is analogous to methodological solipsism, consider how we differentiate compositions from one another. Traditionally, this is done by referring to a composition’s score (Benson, 2003). That is, compositions are identified in terms of a particular set of symbols, a particular formal structure. The identification of a composition does not depend upon identifying which audience has heard it. A composition can exist, and be identified, in the absence of its audience-as-environment.

    Another parallel between the classical mind and classical music is that there have been significant modern reactions against the Austro-German musical tradition (Griffiths, 1994, 1995). Interestingly, these reactions parallel many of the reactions of embodied cognitive science against the classical approach. In later sections of this chapter we consider some of these reactions, and explore the idea that they make plausible the claim that “non-cognitive” processes are applicable to classical music. However, before we do so, let us first turn to consider how the parallels considered above are reflected in how classical cognitive scientists study musical cognition.

    • Was this article helpful?