Skip to main content
Social Sci LibreTexts

1.3.3: Studying Daily Behavior

  • Page ID
    224303
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Experience sampling is often used to study everyday behavior (i.e., daily social interactions and activities). In the laboratory, behavior is best studied using direct behavioral observation (e.g., video recordings). In the real world, this is, of course, much more difficult. As Funder put it, it seems it would require a “detective’s report [that] would specify in exact detail everything the participant said and did, and with whom, in all of the contexts of the participant’s life” (Funder, 2007, p. 41).

    As difficult as this may seem, Mehl and colleagues have developed a naturalistic observation methodology that is similar in spirit. Rather than following participants—like a detective—with a video camera (see Craik, 2000), they equip participants with a portable audio recorder that is programmed to periodically record brief snippets of ambient sounds (e.g., 30 seconds every 12 minutes). Participants carry the recorder (originally a microcassette recorder, now a smartphone app) on them as they go about their days and return it at the end of the study. The recorder provides researchers with a series of sound bites that, together, amount to an acoustic diary of participants’ days as they naturally unfold—and that constitute a representative sample of their daily activities and social encounters. Because it is somewhat similar to having the researcher’s ear at the participant’s lapel, they called their method the electronically activated recorder, or EAR (Mehl, Pennebaker, Crow, Dabbs, & Price, 2001). The ambient sound recordings can be coded for many things, including participants’ locations (e.g., at school, in a coffee shop), activities (e.g., watching TV, eating), interactions (e.g., in a group, on the phone), and emotional expressions (e.g., laughing, sighing). As unnatural or intrusive as it might seem, participants report that they quickly grow accustomed to the EAR and say they soon find themselves behaving as they normally would.

    In a cross-cultural study, Ramírez-Esparza and her colleagues used the EAR method to study sociability in the United States and Mexico. Interestingly, they found that although American participants rated themselves significantly higher than Mexicans on the question, “I see myself as a person who is talkative,” they actually spent almost 10 percent less time talking than Mexicans did (Ramírez-Esparza, Mehl, Álvarez Bermúdez, & Pennebaker, 2009). In a similar way, Mehl and his colleagues used the EAR method to debunk the long-standing myth that women are considerably more talkative than men. Using data from six different studies, they showed that both sexes use on average about 16,000 words per day. The estimated sex difference of 546 words was trivial compared to the immense range of more than 46,000 words between the least and most talkative individual (695 versus 47,016 words; Mehl, Vazire, Ramírez-Esparza, Slatcher, & Pennebaker, 2007). Together, these studies demonstrate how naturalistic observation can be used to study objective aspects of daily behavior and how it can yield findings quite different from what other methods yield (Mehl, Robbins, & Deters, 2012).

    A series of other methods and creative ways for assessing behavior directly and unobtrusively in the real world are described in a seminal book on real-world, subtle measures (Webb, Campbell, Schwartz, Sechrest, & Grove, 1981). For example, researchers have used time-lapse photography to study the flow of people and the use of space in urban public places (Whyte, 1980). More recently, they have observed people’s personal (e.g., dorm rooms) and professional (e.g., offices) spaces to understand how personality is expressed and detected in everyday environments (Gosling, Ko, Mannarelli, & Morris, 2002). They have even systematically collected and analyzed people’s garbage to measure what people actually consume (e.g., empty alcohol bottles or cigarette boxes) rather than what they say they consume (Rathje & Murphy, 2001). Because people often cannot and sometimes may not want to accurately report what they do, the direct—and ideally nonreactive—assessment of real-world behavior is of high importance for psychological research (Baumeister, Vohs, & Funder, 2007).

    Studying Daily Physiology

    In addition to studying how people think, feel, and behave in the real world, researchers are also interested in how our bodies respond to the fluctuating demands of our lives. What are the daily experiences that make our “blood boil”? How do our neurotransmitters and hormones respond to the stressors we encounter in our lives? What physiological reactions do we show to being loved—or getting ostracized? You can see how studying these powerful experiences in real life, as they actually happen, may provide more rich and informative data than one might obtain in an artificial laboratory setting that merely mimics these experiences.

    angry woman driving .png

    Real world stressors may result in very different physiological responses than the same stressors simulated in a lab environment. [Image: State Farm, https://goo.gl/FGYyVz, CC BY 2.0, https://goo.gl/9uSnqN]

    Also, in pursuing these questions, it is important to keep in mind that what is stressful, engaging, or boring for one person might not be so for another. It is, in part, for this reason that researchers have found only limited correspondence between how people respond physiologically to a standardized laboratory stressor (e.g., giving a speech) and how they respond to stressful experiences in their lives. To give an example, Wilhelm and Grossman (2010) describe a participant who showed rather minimal heart rate increases in response to a laboratory stressor (about five to 10 beats per minute) but quite dramatic increases (almost 50 beats per minute) later in the afternoon while watching a soccer game. Of course, the reverse pattern can happen as well, such as when patients have high blood pressure in the doctor’s office but not in their home environment—the so-called white coat hypertension (White, Schulman, McCabe, & Dey, 1989).

    Ambulatory physiological monitoring – that is, monitoring physiological reactions as people go about their daily lives - has a long history in biomedical research and an array of monitoring devices exist (Fahrenberg & Myrtek, 1996). Among the biological signals that can now be measured in daily life with portable signal recording devices are the electrocardiogram (ECG), blood pressure, electrodermal activity (or “sweat response”), body temperature, and even the electroencephalogram (EEG) (Wilhelm & Grossman, 2010). Most recently, researchers have added ambulatory assessment of hormones (e.g., cortisol) and other biomarkers (e.g., immune markers) to the list (Schlotz, 2012). The development of ever more sophisticated ways to track what goes on underneath our skins as we go about our lives is a fascinating and rapidly advancing field.

    In a recent study, Lane, Zareba, Reis, Peterson, and Moss (2011) used experience sampling combined with ambulatory electrocardiography (a so-called Holter monitor) to study how emotional experiences can alter cardiac function in patients with a congenital heart abnormality (e.g., long QT syndrome). Consistent with the idea that emotions may, in some cases, be able to trigger a cardiac event, they found that typical—in most cases even relatively low intensity— daily emotions had a measurable effect on ventricular repolarization, an important cardiac indicator that, in these patients, is linked to risk of a cardiac event. In another study, Smyth and colleagues (1998) combined experience sampling with momentary assessment of cortisol, a stress hormone. They found that momentary reports of current or even anticipated stress predicted increased cortisol secretion 20 minutes later. Further, and independent of that, the experience of other kinds of negative affect (e.g., anger, frustration) also predicted higher levels of cortisol and the experience of positive affect (e.g., happy, joyful) predicted lower levels of this important stress hormone. Taken together, these studies illustrate how researchers can use ambulatory physiological monitoring to study how the little—and seemingly trivial or inconsequential—experiences in our lives leave objective, measurable traces in our bodily systems.


    Conducting Psychology Research in the Real World by Matthias R. Mehl is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.


    This page titled 1.3.3: Studying Daily Behavior is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael Miguel.