Skip to main content
Social Sci LibreTexts

1.3.4: Studying Online Behavior

  • Page ID
    224310
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Another domain of daily life that has only recently emerged is virtual daily behavior or how people act and interact with others on the Internet. Irrespective of whether social media will turn out to be humanity’s blessing or curse (both scientists and laypeople are currently divided over this question), the fact is that people are spending an ever increasing amount of time online. In light of that, researchers are beginning to think of virtual behavior as being as serious as “actual” behavior and seek to make it a legitimate target of their investigations (Gosling & Johnson, 2010).

    messages on a bulletin .png

    Online activity reveals a lot of psychological information to researchers. [Image: Sarah C. Frey, CC BY-NC-SA 2.0, https://goo.gl/Toc0ZF]

    One way to study virtual behavior is to make use of the fact that most of what people do on the Web—emailing, chatting, tweeting, blogging, posting— leaves direct (and permanent) verbal traces. For example, differences in the ways in which people use words (e.g., subtle preferences in word choice) have been found to carry a lot of psychological information (Pennebaker, Mehl, & Niederhoffer, 2003). Therefore, a good way to study virtual social behavior is to study virtual language behavior. Researchers can download people’s—often public—verbal expressions and communications and analyze them using modern text analysis programs (e.g., Pennebaker, Booth, & Francis, 2007).

    For example, Cohn, Mehl, and Pennebaker (2004) downloaded blogs of more than a thousand users of lifejournal.com, one of the first Internet blogging sites, to study how people responded socially and emotionally to the attacks of September 11, 2001. In going “the online route,” they could bypass a critical limitation of coping research, the inability to obtain baseline information; that is, how people were doing before the traumatic event occurred. Through access to the database of public blogs, they downloaded entries from two months prior to two months after the attacks. Their linguistic analyses revealed that in the first days after the attacks, participants expectedly expressed more negative emotions and were more cognitively and socially engaged, asking questions and sending messages of support. Already after two weeks, though, their moods and social engagement returned to baseline, and, interestingly, their use of cognitive-analytic words (e.g., “think,” “question”) even dropped below their normal level. Over the next six weeks, their mood hovered around their pre-9/11 baseline, but both their social engagement and cognitive-analytic processing stayed remarkably low. This suggests a social and cognitive weariness in the aftermath of the attacks. In using virtual verbal behavior as a marker of psychological functioning, this study was able to draw a fine timeline of how humans cope with disasters.

    Reflecting their rapidly growing real-world importance, researchers are now beginning to investigate behavior on social networking sites such as Facebook (Wilson, Gosling, & Graham, 2012). Most research looks at psychological correlates of online behavior such as personality traits and the quality of one’s social life but, importantly, there are also first attempts to export traditional experimental research designs into an online setting. In a pioneering study of online social influence, Bond and colleagues (2012) experimentally tested the effects that peer feedback has on voting behavior. Remarkably, their sample consisted of 16 million (!) Facebook users. They found that online political-mobilization messages (e.g., “I voted” accompanied by selected pictures of their Facebook friends) influenced real-world voting behavior. This was true not just for users who saw the messages but also for their friends and friends of their friends. Although the intervention effect on a single user was very small, through the enormous number of users and indirect social contagion effects, it resulted cumulatively in an estimated 340,000 additional votes—enough to tilt a close election. In short, although still in its infancy, research on virtual daily behavior is bound to change social science, and it has already helped us better understand both virtual and “actual” behavior.

    “Smartphone Psychology”?

    A review of research methods for studying daily life would not be complete without a vision of “what’s next.” Given how common they have become, it is safe to predict that smartphones will not just remain devices for everyday online communication but will also become devices for scientific data collection and intervention (Kaplan & Stone, 2013; Yarkoni, 2012). These devices automatically store vast amounts of real-world user interaction data, and, in addition, they are equipped with sensors to track the physical (e. g., location, position) and social (e.g., wireless connections around the phone) context of these interactions. Miller (2012, p. 234) states, “The question is not whether smartphones will revolutionize psychology but how, when, and where the revolution will happen.” Obviously, their immense potential for data collection also brings with it big new challenges for researchers (e.g., privacy protection, data analysis, and synthesis). Yet it is clear that many of the methods described in this module—and many still to be developed ways of collecting real-world data—will, in the future, become integrated into the devices that people naturally and happily carry with them from the moment they get up in the morning to the moment they go to bed.

    Conclusion

    This module sought to make a case for psychology research conducted outside the lab. If the ultimate goal of the social and behavioral sciences is to explain human behavior, then researchers must also—in addition to conducting carefully controlled lab studies—deal with the “messy” real world and find ways to capture life as it naturally happens.

    Mortensen and Cialdini (2010) refer to the dynamic give-and-take between laboratory and field research as “full-cycle psychology”. Going full cycle, they suggest, means that “researchers use naturalistic observation to determine an effect’s presence in the real world, theory to determine what processes underlie the effect, experimentation to verify the effect and its underlying processes, and a return to the natural environment to corroborate the experimental findings” (Mortensen & Cialdini, 2010, p. 53). To accomplish this, researchers have access to a toolbox of research methods for studying daily life that is now more diverse and more versatile than it has ever been before. So, all it takes is to go ahead and—literally—bring science to life.


    Conducting Psychology Research in the Real World by Matthias R. Mehl is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.


    This page titled 1.3.4: Studying Online Behavior is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael Miguel.