Skip to main content
Social Sci LibreTexts

7.1.2: Structure of the Vestibular receptors

  • Page ID
    225197
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The vestibular receptors lie in the inner ear next to the auditory cochlea. They detect rotational motion (head turns), linear motion (translations), and tilts of the head relative to gravity and transduce these motions into neural signals that can be sent to the brain. There are five vestibular receptors in each ear (Hearing module, Figure 1- http://noba.to/jry3cu78), including three semicircular canals (horizontal, anterior, and posterior) that transduce rotational angular accelerations and two otolith receptors (utricle and saccule) that transduce linear accelerations (Lindeman, 1969). Together, the semicircular canals and otolith organs can respond to head motion and maintained static head position relative to gravity in all directions in 3D space.

    These receptors are contained in a series of interconnected fluid filled tubes that are protected by a dense, overlying bone (Iurato, 1967). Each of the three semicircular canals lies in a plane that is orthogonal to the other two. The horizontal semicircular canal lies in a roughly horizontal head plane, whereas the anterior and posterior semicircular canals lie vertically in the head (Blanks, Curthoys, Bennett, & Markham, 1985). The semicircular canal receptor cells, termed hair cells, are located only in the middle of the circular tubes in a special epithelium, covered by a gelatinous membrane that stretches across the tube to form a fluid-tight seal like the skin of a drum (Figures 1A and 1B). Hair cells are so named due to an array of nearly 100 staggered-height stereocilia (like a church pipe organ) that protrude from the top of the cell into the overlying gelatin membrane (Wersäll, 1956). The shortest stereocilia are at one end of the cell and the tallest at the other (Lindeman, 1969). When the head is rotated, the fluid in the semicircular canals lags behind the head motion and pushes on the gelatin membrane, which bends the stereocilia.

    receptor hair cells .png

    Figure 1. Receptor hair cells and semicircular canal structure. A) Vestibular hair cell in the receptor epithelium with stereocilia in the apical surface of the cell. Innervating afferent and efferent neurons make synaptic contacts with the basal surface of the cell. B) Semicircular canal structure showing the fluid duct, the hair cell stereocilia embedded in a gelatinous membrane on top of the hair cells, and the innervating afferent fibers.

    As shown in Figure 2, when the head moves toward the receptor hair cells (e.g., left head turns for the left horizontal semicircular canal), the stereocilia are bent toward the tallest end and special mechanically gated ion channels in the tips of the cilia open, which excites (depolarizes) the cell (Shotwell, Jacobs, & Hudspeth, 1981). Head motion in the opposite direction causes bending toward the smallest stereocilia, which closes the channels and inhibits (hyperpolarizes) the cell. The left and right ear semicircular canals have opposite polarity, so for example, when you turn your head to the left, the receptors in the left horizontal semicircular canal will be excited while right ear horizontal canal receptors will be inhibited (Figure 3). The same relationship is true for the vertical semicircular canals. Vestibular afferent nerve fibers innervate the base of the hair cell and increase or decrease their neural firing rate as the receptor cell is excited or inhibited (Dickman and Correia, 1989), respectively, and then carry these signals regarding head rotational motion to the brain as part of the vestibulocochlear nerve (Cranial nerve VIII). They enter the brainstem and terminate in the ipsilateral vestibular nuclei, cerebellum, and reticular formation (Carleton & Carpenter, 1984; Dickman & Fang, 1996). The primary vestibular hair cell and afferent neurotransmitters are glutamate and aspartate. Due to the mechanical properties of the vestibular receptor system, rotational accelerations of the head are integrated into velocity signals (Van Egmond, Groen, & Jongkess, 1949) that are then encoded by semicircular canal afferents (Fernandez & Goldberg, 1971). Detection thresholds for rotational motion have shown that afferents can discriminate differences in head velocity on the order of 2 deg/sec, but also are sensitive to a broad range of natural head movements up to high head speeds in the hundreds of deg/sec (as you might experience when you make a fast head turn toward a loud sound, or are performing gymnastics; Sadeghi, Chacron, Taylor, & Cullen, 2007; Yu, Dickman, & Angelaki, 2012).

    Vestibular receptor cell directional selectivity.png

    Figure 2. Vestibular receptor cell directional selectivity. Middle) At rest, hair cells release some neurotransmitter, producing a high, spontaneous firing rate in the innervating afferent fibers. Left) When the stereocilia are displaced toward the kinocilium, the cell is depolarized and the afferent firing rate is increased. Right) When the stereocilia are displaced away from the kinocilium, the cell is hyperpolarized and the afferent firing rate is decreased

    receptor hair cells in the otolith organs .png

    Figure 3. Receptor hair cells in the otolith organs. Receptor cells have stereocilia embedded in the gelatinous membrane, which is covered by thousands of calcium carbonite otoconia. Receptor cells are polarized in opposite directions relative to a central location and are innervated by VIIIth nerve afferent fibers.

    Otolith receptors are sensitive to linear accelerations and tilts of the head relative to gravity (Fernandez & Goldberg, 1976a). The utricle otolith receptor lies parallel to the horizontal semicircular canal and the saccule receptor lies vertical in the head (Hearing module, Figure 1- http://noba.to/jry3cu78). As shown in Figure 4, a special otolith epithelium contains receptor hair cells whose stereocilia extend into a gelatin membrane that is covered by a layer of calcium carbonate crystals, termed otoconia, like rocks piled up to form a jetty (Lindeman, 1969). Otoconia are not affected by fluid movements but instead are displaced by linear accelerations, including translations (e.g., forward/backward or upward/downward motions) or changes in head position relative to gravity. These linear accelerations produce displacements of the otoconia (due to their high mass), much like rocks rolling down a hill or your coffee cup falling off the car dashboard when you push the gas pedal. Movements of the otoconia bend the hair cell stereocilia and open/close channels in a similar way to that described for the semicircular canals. However, otolith hair cells are polarized such that the tallest stereocilia are pointing toward the center of the utricle and away from the center in the saccule, which effectively splits the receptors into two opposing groups (Flock, 1964; Lindeman, 1969). In this way, some hair cells are excited and some inhibited for each linear motion force or head tilt experienced, with the population of receptors and their innervating afferents being directionally tuned to all motions or head tilts in 3D space (Fernandez & Goldberg, 1976b).

    Vestibular response to horizontal plane head rotation.png

    Figure 4. Vestibular response to horizontal plane head rotation. A) When the head is stationary, afferent fibers on both the sides of the head have equivalent firing so there is no sense of motion. B) When the head turns to the left, all of the left horizontal semicircular canal hair cells are excited and afferent fibers increase their firing rate. Conversely, right horizontal canal afferents decrease their firing rate

    All vestibular hair cells and afferents receive connections from vestibular efferents, which are fibers projecting from the brain out to the vestibular receptor organs, whose function is not well understood. It is thought that efferents control the sensitivity of the receptor (Boyle, Carey, & Highstein, 1991). The primary efferents neurotransmitter is acetylcholine (Anniko & Arnold, 1991).


    The Vestibular System by Dora Angelaki and J. David Dickman is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.


    This page titled 7.1.2: Structure of the Vestibular receptors is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael Miguel.