Skip to main content
Social Sci LibreTexts

10.2.2: The Evolution of Social Behavior

  • Page ID
    226902
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky’s famous dictum also holds true for explaining the evolution of love. Life on earth is fundamentally social: The ability to dynamically interact with other living organisms to support mutual homeostasis, growth, and reproduction evolved very early. Social interactions are present in primitive invertebrates and even among prokaryotes: Bacteria recognize and approach members of their own species. Bacteria also reproduce more successfully in the presence of their own kind and are able to form communities with physical and chemical characteristics that go far beyond the capabilities of the individual cell (Ingham & Ben-Jacob, 2008).

    close up photo of a bee .png

    Life on earth is essentially social and many species besides humans engage in complex social interactions and have developed complex social systems that shape their behavior. [Image: www.metaphoricalplatypus.com, https://goo.gl/9n0Dli, CC BY 2.0, https://goo.gl/v4Y0Zv]

    As another example, various insect species have evolved particularly complex social systems, known as eusociality. Characterized by a division of labor, eusociality appears to have evolved independently at least 11 times in insects. Research on honeybees indicates that a complex set of genes and their interactions regulate eusociality, and that these resulted from an “accelerated form of evolution” (Woodard et al., 2011). In other words, molecular mechanisms favoring high levels of sociality seem to be on an evolutionary fast track.

    The evolutionary pathways that led from reptiles to mammals allowed the emergence of the unique anatomical systems and biochemical mechanisms that enable social engagement and selectively reciprocal sociality. Reptiles show minimal parental investment in offspring and form nonselective relationships between individuals. Pet owners may become emotionally attached to their turtle or snake, but this relationship is not reciprocal. In contrast, most mammals show intense parental investment in offspring and form lasting bonds with their children. Many mammalian species—including humans, wolves, and prairie voles—also develop long-lasting, reciprocal, and selective relationships between adults, with several features of what humans experience as “love.” In turn, these reciprocal interactions trigger dynamic feedback mechanisms that foster growth and health.

    What is love? An evolutionary and physiological perspective

    Human love is more complex than simple feedback mechanisms. Love may create its own reality. The biology of love originates in the primitive parts of the brain—the emotional core of the human nervous system—which evolved long before the cerebral cortex. The brain “in love” is flooded with vague sensations, often transmitted by the vagus nerve, and creating much of what we experience as emotion. The modern cortex struggles to interpret love’s primal messages, and weaves a narrative around incoming visceral experiences, potentially reacting to that narrative rather than to reality. It also is helpful to realize that mammalian social behavior is supported by biological components that were repurposed or co-opted over the course of mammalian evolution, eventually permitting lasting relationships between adults.

    Is there a hormone of love and other relationships?

    One element that repeatedly appears in the biochemistry of love is the neuropeptide oxytocin. In large mammals, oxytocin adopts a central role in reproduction by helping to expel the big-brained baby from the uterus, ejecting milk and sealing a selective and lasting bond between mother and offspring (Keverne, 2006). Mammalian offspring crucially depend on their mother’s milk for some time after birth. Human mothers also form a strong and lasting bond with their newborns immediately after birth, in a time period that is essential for the nourishment and survival of the baby. However, women who give birth by cesarean section without going through labor, or who opt not to breastfeed, are still able to form a strong emotional bond with their children. Furthermore, fathers, grandparents, and adoptive parents also form lifelong attachments to children. Preliminary evidence suggests that the simple presence of an infant can release oxytocin in adults as well (Feldman, 2012; Kenkel et al., 2012). The baby virtually forces us to love it.

    married couple holding their childs feet .png

    How would it feel to learn that love is nothing more than biological processes in the brain? Would it make a difference to you? Or is the fact you feel love all that matters? [Image: CC0 Public Domain, https://goo.gl/m25gce]

    The case for a major role for oxytocin in love is strong, but until recently was based largely on extrapolation from research on parental behavior (Feldman, 2012) or social behaviors in animals (Carter, 1998; Kenkel et al., 2012). However, recent human experiments have shown that intranasal delivery of oxytocin can facilitate social behaviors, including eye contact and social cognition (Meyer-Lindenberg, Domes, Kirsch, & Heinrichs, 2011)—behaviors that are at the heart of love.

    Of course, oxytocin is not the molecular equivalent of love. Rather, it is just one important component of a complex neurochemical system that allows the body to adapt to highly emotional situations. The systems necessary for reciprocal social interactions involve extensive neural networks through the brain and autonomic nervous system that are dynamic and constantly changing across the life span of an individual. We also now know that the properties of oxytocin are not predetermined or fixed. Oxytocin’s cellular receptors are regulated by other hormones and epigenetic factors. These receptors change and adapt based on life experiences. Both oxytocin and the experience of love can change over time. In spite of limitations, new knowledge of the properties of oxytocin has proven useful in explaining several enigmatic features of love.


    Biochemistry of Love by Sue Carter and Stephen Porges is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.


    This page titled 10.2.2: The Evolution of Social Behavior is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael Miguel.