Skip to main content
Social Sci LibreTexts

10.2.5: Can love - or perhaps oxytocin - be a medicine?

  • Page ID
    226920
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Although research has only begun to examine the physiological effects of these peptides beyond social behavior, there is a wealth of new evidence showing that oxytocin can influence physiological responses to stress and injury. As only one example, the molecules associated with love have restorative properties, including the ability to literally heal a “broken heart.” Oxytocin receptors are expressed in the heart, and precursors for oxytocin appear to be critical for the development of the fetal heart (Danalache, Gutkowska, Slusarz, Berezowska, & Jankowski, 2010). Oxytocin exerts protective and restorative effects in part through its capacity to convert undifferentiated stem cells into cardiomyocytes. Oxytocin can facilitate adult neurogenesis and tissue repair, especially after a stressful experience. We now know that oxytocin has direct anti-inflammatory and antioxidant properties in in vitro models of atherosclerosis (Szeto et al., 2008). The heart seems to rely on oxytocin as part of a normal process of protection and self-healing.

    doctor examining young girl .png

    Researchers are interested in the medical/therapeutic potential of oxytocin. [Image: CC0 Public Domain, https://goo.gl/m25gce]

    Thus, oxytocin exposure early in life not only regulates our ability to love and form social bonds, it also affects our health and well-being. Oxytocin modulates the hypothalamic–pituitary adrenal (HPA) axis, especially in response to disruptions in homeostasis (Carter, 1998), and coordinates demands on the immune system and energy balance. Long-term, secure relationships provide emotional support and down-regulate reactivity of the HPA axis, whereas intense stressors, including birth, trigger activation of the HPA axis and sympathetic nervous system. The ability of oxytocin to regulate these systems probably explains the exceptional capacity of most women to cope with the challenges of childbirth and childrearing.

    Dozens of ongoing clinical trials are currently attempting to examine the therapeutic potential of oxytocin in disorders ranging from autism to heart disease. Of course, as in hormonal studies in voles, the effects are likely to depend on the history of the individual and the context, and to be dose-dependent. As this research is emerging, a variety of individual differences and apparent discrepancies in the effects of exogenous oxytocin are being reported. Most of these studies do not include any information on the endogenous hormones, or on the oxytocin or vasopressin receptors, which are likely to affect the outcome of such treatments.

    Conclusion

    Research in this field is new and there is much left to understand. However, it is already clear that both love and oxytocin are powerful. Of course, with power comes responsibility. Although research into mechanisms through which love—or hormones such as oxytocin—may protect us against stress and disease is in its infancy, this knowledge will ultimately increase our understanding of the way that our emotions impact upon health and disease. The same molecules that allow us to give and receive love also link our need for others with health and well-being.

    Acknowledgments

    C. Sue Carter and Stephen W. Porges are both Professors of Psychiatry at the University of North Carolina, Chapel Hill, and also are Research Professors of Psychology at Northeastern University, Boston.

    Discussions of “love and forgiveness” with members of the Fetzer Institute’s Advisory Committee on Natural Sciences led to this essay and are gratefully acknowledged here. We are especially appreciative of thoughtful editorial input from Dr. James Harris. Studies from the authors’ laboratories were sponsored by the National Institutes of Health. We also express our gratitude for this support and to our colleagues, whose input and hard work informed the ideas expressed in this article. A version of this paper was previously published in EMBO Reports in the series on “Sex and Society”; this paper is reproduced with the permission of the publishers of that journal.


    Biochemistry of Love by Sue Carter and Stephen Porges is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.


    This page titled 10.2.5: Can love - or perhaps oxytocin - be a medicine? is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Michael Miguel.