Skip to main content
Social Sci LibreTexts

19.3: C.3- How Can Human Behavioral Ecology Help Us Understand the World?

  • Page ID
    • Kristin Snopkowski

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Throughout this appendix, I have been discussing one of the main research areas in Human Behavioral Ecology: cooperation and sharing. Two other prominent areas of research for Human Behavioral Ecologists include production and reproduction. Production research explores how people acquire the resources that they need. Some research in this area has examined which items people choose to include in their diets and how long people spend foraging. This research has shown that people do not simply acquire any food resource in their environment; instead they make strategic decisions based on the food options available and the possible nutrients gained. Research on reproduction includes an examination of how people choose mates, make reproductive choices, invest in children, and acquire help to raise offspring. This line of research has shown that human mothers need help from others to raise offspring, and this help can come from a variety of sources, including the child’s father, grandmothers, older siblings, grandfathers, or others (Hrdy 2009; Sear and Mace 2008). This is quite different from our nonhuman primate relatives, for whom almost all offspring care is given by mothers. These research areas capture many behaviors we faced in our evolutionary history: How did we obtain food, how did we distribute that food once we had it, and how did we make mating and reproductive decisions? All of the topics examined in the field of human behavioral ecology are closely linked to survival and reproduction and to understanding how the environment influences decision making.

    Some common misperceptions about human behavioral ecology cause skepticism of this type of research. Some critiques have argued that studying the evolution of human behavior is problematic because of biological determinism, the idea that all behaviors are innate, determined by our genes. If behaviors are innate, then we cannot hold people accountable for their actions. But this is a misunderstanding. As mentioned previously, both genes and the environment influence behavior. Individuals may have a tendency to behave in a particular way, but behaviors are flexible. Also, there is no guarantee that everyone behaves in perfectly optimal ways. Over evolutionary time, those who behaved in ways that resulted in more successful offspring had a greater representation of genes in the next generation, but in each generation we have variation in environments, genotypes, phenotypes, and behaviors on which selection can act.

    Another common misconception is that by studying human behavior, human behavioral ecologists are providing justifications for those behaviors. The naturalistic fallacy describes the incorrect belief that what occurs in nature is what ought to be. This is a fallacy because it is absolutely not the goal of researchers in this field. For instance, some researchers study human violence. It is wrong to assume that by studying violence, the researchers believe that violence is an acceptable behavior or is justifiable. It is easy to slip into this misconception.

    Modern Applications

    While it may seem that the field of human behavioral ecology is more concerned about our evolutionary past than our present, there are many contemporary issues that human behavioral ecology can help us solve. One area that human behavioral ecologists have focused on is climate change (Schradin 2021). In many ways, solving the climate crisis is similar to that of homelessness; it requires many people to come together and sacrifice for the benefit of all. Evidence has shown that people are more likely to sacrifice for others’ benefit when their good deeds are known, their actions improve their reputation, or their failure to act produces negative consequences, like increased taxes (Milinski et al. 2002). By focusing on these motivators, policy makers may be able to leverage people to minimize their carbon usage, although current progress achieving targets has seen limited success. Researchers have also used evolutionary theory to improve handwashing rates around the world (Curtis 2013), reduce the obesity epidemic (Pepper and Nettle 2014), ease conflicts (de Waal 2000), and improve cooperation (Boyd and Richerson 1992).

    This page titled 19.3: C.3- How Can Human Behavioral Ecology Help Us Understand the World? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Kristin Snopkowski (Society for Anthropology in Community Colleges) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.