Skip to main content
Social Sci LibreTexts

18.7.2: Non-Cognitive Factors in Achievement

  • Page ID
    245760
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    1. Define self-control and self-regulation.
    2. Describe how motivation and resilience influence academic engagement and persistence.
    3. Distinguish between growth and fixed mindsets.
    4. Identify gender-related trends in academic performance and discuss contributing factors.

    Academic achievement in middle childhood is not solely determined by intelligence. A growing body of research indicates that noncognitive factors—such as self-regulation, motivation, mindset, and social-emotional development—play a significant role in children’s academic performance. These traits affect how children approach learning, respond to setbacks, and persist through challenges.

    Self-Control and Self-Regulation

    Self-control is the ability to manage attention and behavior in order to achieve long-term goals. In school settings, self-control helps students stay focused during lessons, resist distractions, wait their turn, and complete tasks (Duckworth & Seligman, 2005). It’s closely related to self-regulation, which includes planning, goal-setting, and emotional regulation.

    Children who show strong self-control tend to have better academic outcomes, even when controlling for IQ. In fact, studies suggest that self-discipline may be a stronger predictor of school success than intelligence (Duckworth & Carlson, 2013).

    Motivational Resilience and Vulnerability

    Motivation refers to the internal drive that prompts individuals to achieve their goals and engage in learning. Some children exhibit motivational resilience—a tendency to persevere through difficulty, view failure as a learning opportunity, and remain engaged even when tasks are challenging.

    Others may be more motivationally vulnerable, meaning they are more likely to give up when faced with setbacks, especially if they have experienced repeated academic struggles. Motivation is influenced by past experiences, feedback from adults, peer comparison, and classroom climate (Skinner, Kindermann, & Furrer, 2009).

    Creating supportive classroom environments that celebrate effort and progress, rather than only performance, can help buffer vulnerability and promote long-term engagement.

    Growth vs. Fixed Mindset

    Mindset—the beliefs children hold about their own abilities—has a significant influence on motivation and academic behaviors. According to Dweck (2006), children with a growth mindset believe that intelligence and abilities can be improved through effort and practice. They are more likely to embrace challenges, persist in the face of failure, and learn from feedback.

    In contrast, children with a fixed mindset believe their abilities are unchangeable. When faced with difficulty, they may avoid tasks, fear failure, or assume they “just aren’t smart.” Teachers can foster a growth mindset by praising effort, teaching that the brain grows through learning, and encouraging risk-taking in learning tasks.

    Fixed and growth mindsets

    Figure \(\PageIndex{1}\). Fixed vs. growth mindset indicators in response to challenge, adversity, effort, criticism, and others' success. Image by Wikimedia Commons User U3170151 is licensed CC BY-SA 4.0.

    Gender and Academic Performance

    Gender differences in academic outcomes begin to appear in middle childhood. On average, girls tend to outperform boys in reading and writing, while boys are more represented at both the high and low ends of mathematics performance (Robinson & Lubienski, 2011). These differences are influenced by biological, social, and cultural factors.

    Boys may struggle more with self-regulation and classroom behavior, while girls may experience higher rates of academic anxiety or perfectionism. Teachers’ expectations and gender stereotypes can also shape students' self-perceptions and achievement patterns. Recognizing and addressing these patterns helps ensure that both boys and girls receive the support they need to succeed.

    References, Contributors and Attributions

    Duckworth, A. L., & Carlson, S. M. (2013). Self-regulation and school success. In B. W. Sokol, F. M. E. Grouzet, & U. Müller (Eds.), Self-regulation and autonomy: Social and developmental dimensions of human conduct (pp. 208–230). Cambridge University Press. https://doi.org/10.1017/CBO9781139152198.015

    Duckworth, A. L., & Seligman, M. E. P. (2005). Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychological Science, 16(12), 939–944. https://doi.org/10.1111/j.1467-9280.2005.01641.x

    Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.

    Robinson, J. P., & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48(2), 268–302. https://doi.org/10.3102/0002831210372249

    Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection. Educational and Psychological Measurement, 69(3), 493–525. https://doi.org/10.1177/0013164408323233


    This page titled 18.7.2: Non-Cognitive Factors in Achievement is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Heather Carter.