9.11: Solutions
- Page ID
- 261828
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The probability is equal to the area from x = 3232" role="presentation" style="position: relative;">
f(x) = 1919" role="presentation" style="position: relative;">
No, outcomes are not equally likely. In this distribution, more people require a little bit of time, and fewer people require a lot of time, so it is more likely that someone will require less time.
The mean is larger. The mean is 1m=10.75≈1.331m=10.75≈1.33" role="presentation" style="position: relative;">
- X ~ U(1, 9)
- Answers may vary.
- f(x)=18f(x)=18" role="presentation" style="position: relative;">
f(x)=18f(x)=18f(x)=18 where 1≤x≤91≤x≤9" role="presentation" style="position: relative;">1≤x≤91≤x≤91≤x≤9 - five
- 2.3
- 15321532" role="presentation" style="position: relative;">
153215321532 - 333800333800" role="presentation" style="position: relative;">
333800333800333800 - 2323" role="presentation" style="position: relative;">
232323 - 8.2
- X represents the length of time a commuter must wait for a train to arrive on the Red Line.
- X ~ U(0, 8)
- Graph the probability distribution.
-
f(x)=18 f ( x ) = 1 8 " role="presentation" style="position: relative;">
f(x)=18f(x)=18 f ( x ) = 1 8 where 0≤x≤80 ≤ x ≤ 8" role="presentation" style="position: relative;">0≤x≤80≤x≤80 ≤ x ≤ 8 - four
- 2.31
-
18 1 8 " role="presentation" style="position: relative;">
1818 1 8 -
18 1 8 " role="presentation" style="position: relative;">
1818 1 8 - 3.2
- The probability density function of X is 125−16=19125−16=19" role="presentation" style="position: relative;">
125−16=19125−16=19125−16=19 .
P(X > 19) = (25 – 19) (19)(19)" role="presentation" style="position: relative;">(19)(19)(19) = 6969" role="presentation" style="position: relative;">696969 = 2323" role="presentation" style="position: relative;">232323 .19) = 2/3.">19) = 2/3." width="968" height="456" data-lazy-src="/apps/archive/20240130.204924/resources/8e6879719f6f0b2c01f4a67c4c3e282fbdcfbc27">
Figure 5.54 - P(19 < X < 22) = (22 – 19) (19)(19)" role="presentation" style="position: relative;">
(19)(19)(19) = 3939" role="presentation" style="position: relative;">393939 = 1313" role="presentation" style="position: relative;">131313 .Figure 5.55 - The area must be 0.25, and 0.25 = (width)(19)(19)" role="presentation" style="position: relative;">
(19)(19)(19) , so width = (0.25)(9) = 2.25. Thus, the value is 25 – 2.25 = 22.75. - This is a conditional probability question. P(x > 21| x > 18). You can do this two ways:
- Draw the graph where a is now 18 and b is still 25. The height is 1(25−18)1(25−18)" role="presentation" style="position: relative;">
1(25−18)1(25−18)1(25−18) = 1717" role="presentation" style="position: relative;">171717
So, P(x > 21|x > 18) = (25 – 21)(17)(17)" role="presentation" style="position: relative;">(17)(17)(17) = 4/7. - Use the formula: P(x > 21|x > 18) = P(x>21 AND x>18)P(x>18)P(x>21 AND x>18)P(x>18)" role="presentation" style="position: relative;">
P(x>21 AND x>18)P(x>18)P(x>21 AND x>18)P(x>18)P(x>21 AND x>18)P(x>18)
= P(x>21)P(x>18)P(x>21)P(x>18)" role="presentation" style="position: relative;">P(x>21)P(x>18)P(x>21)P(x>18)P(x>21)P(x>18) = (25−21)(25−18)(25−21)(25−18)" role="presentation" style="position: relative;">(25−21)(25−18)(25−21)(25−18)(25−21)(25−18) = 4747" role="presentation" style="position: relative;">474747 .
- Draw the graph where a is now 18 and b is still 25. The height is 1(25−18)1(25−18)" role="presentation" style="position: relative;">
- P(X > 650) = 700−650700−300=50400=18700−650700−300=50400=18" role="presentation" style="position: relative;">
700−650700−300=50400=18700−650700−300=50400=18700−650700−300=50400=18 = 0.125 - P(400 < X < 650) = 650−400700−300=250400650−400700−300=250400" role="presentation" style="position: relative;">
650−400700−300=250400650−400700−300=250400650−400700−300=250400 = 0.625 - 0.10 = width700−300width700−300" role="presentation" style="position: relative;">
width700−300width700−300width700−300 , so width = 400(0.10) = 40. Since 700 – 40 = 660, the drivers travel at least 660 miles on the furthest 10% of days.
- X = the useful life of a particular car battery, measured in months.
- X is continuous.
- X ~ Exp(0.025)
- 40 months
- 360 months
- 0.4066
- 14.27
- X = the time (in years) after reaching age 60 that it takes an individual to retire
- X is continuous.
- X ~ Exp(15)(15)" role="presentation" style="position: relative;">
(15)(15)(15) - five
- five
- Answers may vary.
- 0.1353
- before
- 18.3
Let T = the life time of a light bulb.
The decay parameter is m = 1/8, and T ∼ Exp(1/8). The cumulative distribution function is P(T<t)=1−e−t8P(T<t)=1−e−t8" role="presentation" style="position: relative;">
- Therefore, P(T < 1) = 1 – e–18–18" role="presentation" style="position: relative;">
–18–18–18 ≈ 0.1175. - We want to find P(6 < t < 10).
To do this, P(6 < t < 10) – P(t < 6)
=(1–e–18*10)–(1–e–18*6)=(1–e–18*10)–(1–e–18*6)" role="presentation" style="position: relative;">=(1–e–18*10)–(1–e–18*6)=(1–e–18*10)–(1–e–18*6)=(1–e–18*10)–(1–e–18*6) ≈ 0.7135 – 0.5276 = 0.1859Figure 5.56 - We want to find 0.70 =P(T>t)=1–(1–e−t8)=e−t8.=P(T>t)=1–(1–e−t8)=e−t8." role="presentation" style="position: relative;">
=P(T>t)=1–(1–e−t8)=e−t8.=P(T>t)=1–(1–e−t8)=e−t8.=P(T>t)=1–(1–e−t8)=e−t8.
Solving for t, e–t8–t8" role="presentation" style="position: relative;">–t8–t8–t8 = 0.70, so –t8–t8" role="presentation" style="position: relative;">–t8–t8–t8 = ln(0.70), and t = –8ln(0.70) ≈ 2.85 years.
Or use t = ln(area_to_the_right)(–m)=ln(0.70)–18≈2.85 yearsln(area_to_the_right)(–m)=ln(0.70)–18≈2.85 years" role="presentation" style="position: relative;">ln(area_to_the_right)(–m)=ln(0.70)–18≈2.85 yearsln(area_to_the_right)(–m)=ln(0.70)–18≈2.85 yearsln(area_to_the_right)(–m)=ln(0.70)–18≈2.85 years .2.85) = 0.70.">2.85) = 0.70." width="981" height="564" src="/apps/archive/20240130.204924/resources/443d2d74b21ce16f1b3033b0eaee2d8aa8fe7a3d">
Figure 5.57 - We want to find 0.02 = P(T < t) = 1 – e–t8–t8" role="presentation" style="position: relative;">
–t8–t8–t8 .
Solving for t, e–t8–t8" role="presentation" style="position: relative;">–t8–t8–t8 = 0.98, so –t8–t8" role="presentation" style="position: relative;">–t8–t8–t8 = ln(0.98), and t = –8ln(0.98) ≈ 0.1616 years, or roughly two months.
The warranty should cover light bulbs that last less than 2 months.
Or use ln(area_to_the_right)(–m)=ln(1–0.2)–18ln(area_to_the_right)(–m)=ln(1–0.2)–18" role="presentation" style="position: relative;">ln(area_to_the_right)(–m)=ln(1–0.2)–18ln(area_to_the_right)(–m)=ln(1–0.2)–18ln(area_to_the_right)(–m)=ln(1–0.2)–18 = 0.1616. - We must find P(T < 8|T > 7).
Notice that by the rule of complement events, P(T < 8|T > 7) = 1 – P(T > 8|T > 7).
By the memoryless property (P(X > r + t|X > r) = P(X > t)).
So P(T > 8|T > 7) = P(T > 1) = 1–(1–e–18)=e–18≈0.88251–(1–e–18)=e–18≈0.8825" role="presentation" style="position: relative;">1–(1–e–18)=e–18≈0.88251–(1–e–18)=e–18≈0.88251–(1–e–18)=e–18≈0.8825
Therefore, P(T < 8|T > 7) = 1 – 0.8825 = 0.1175.
Let X = the number of no-hitters throughout a season. Since the duration of time between no-hitters is exponential, the number of no-hitters per season is Poisson with mean λ = 3.
Therefore, (X = 0) = 30e–30!30e–30!" role="presentation" style="position: relative;">
NOTE
You could let T = duration of time between no-hitters. Since the time is exponential and there are 3 no-hitters per season, then the time between no-hitters is 1313" role="presentation" style="position: relative;">
Therefore, m = 1μ1μ" role="presentation" style="position: relative;">
- The desired probability is P(T > 1) = 1 – P(T < 1) = 1 – (1 – e–3) = e–3 ≈ 0.0498.
- Let T = duration of time between no-hitters. We find P(T > 2|T > 1), and by the memoryless property this is simply P(T > 1), which we found to be 0.0498 in part a.
- Let X = the number of no-hitters is a season. Assume that X is Poisson with mean λ = 3. Then P(X > 3) = 1 – P(X ≤ 3) = 0.3528.
- 10091009" role="presentation" style="position: relative;">
100910091009 = 11.11 - P(X > 10) = 1 – P(X ≤ 10) = 1 – Poissoncdf(11.11, 10) ≈ 0.5532.
- The number of people with Type B positive blood encountered roughly follows the Poisson distribution, so the number of people X who arrive between successive Type B positive arrivals is roughly exponential with mean μ = 9 and m = 1919" role="presentation" style="position: relative;">
191919 . The cumulative distribution function of X is P(X<x)=1−e−x9P(X<x)=1−e−x9" role="presentation" style="position: relative;">P(X<x)=1−e−x9P(X<x)=1−e−x9P(X<x)=1−e−x9 . Thus, P(X > 20) = 1 - P(X ≤ 20) = 1−(1−e−209)≈0.1084.1−(1−e−209)≈0.1084." role="presentation" style="position: relative;">1−(1−e−209)≈0.1084.1−(1−e−209)≈0.1084.1−(1−e−209)≈0.1084.
NOTE
We could also deduce that each person arriving has a 8/9 chance of not having Type B positive blood. So the probability that none of the first 20 people arrive have Type B positive blood is (89)20≈0.0948(89)20≈0.0948" role="presentation" style="position: relative;">
Let T = duration (in minutes) between successive visits. Since patients arrive at a rate of one patient every seven minutes, μ = 7 and the decay constant is m = 1717" role="presentation" style="position: relative;">
- P(T < 2) = 1 - 1−e−271−e−27" role="presentation" style="position: relative;">
1−e−271−e−271−e−27 ≈ 0.2485. - P(T > 15) = 1−P(T<15)=1−(1−e−157)≈e−157≈0.11731−P(T<15)=1−(1−e−157)≈e−157≈0.1173" role="presentation" style="position: relative;">
1−P(T<15)=1−(1−e−157)≈e−157≈0.11731−P(T<15)=1−(1−e−157)≈e−157≈0.11731−P(T<15)=1−(1−e−157)≈e−157≈0.1173 . - P(T > 15|T > 10) = P(T > 5) = 1−(1−e−57)=e−57≈0.48951−(1−e−57)=e−57≈0.4895" role="presentation" style="position: relative;">
1−(1−e−57)=e−57≈0.48951−(1−e−57)=e−57≈0.48951−(1−e−57)=e−57≈0.4895 . - Let X = # of patients arriving during a half-hour period. Then X has the Poisson distribution with a mean of 307307" role="presentation" style="position: relative;">
307307307 , X ∼ Poisson(307)(307)" role="presentation" style="position: relative;">(307)(307)(307) . Find P(X > 8) = 1 – P(X ≤ 8) ≈ 0.0311.

