Skip to main content
Social Sci LibreTexts

4.9: Language Development

  • Page ID
    60436
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Outcomes

    • Describe stages of language development during infancy
    • Compare theories of language development in toddlers
    Baby boy talking on phone.
    Figure 1. Babies pick up on language skills really early on and can differentiate between sounds long before they can speak themselves.

    Given the remarkable complexity of a language, one might expect that mastering a language would be an especially arduous task; indeed, for those of us trying to learn a second language as adults, this might seem to be true. However, young children master language very quickly with relative ease. B. F. Skinner (1957) proposed that language is learned through reinforcement. Noam Chomsky (1965) criticized this behaviorist approach, asserting instead that the mechanisms underlying language acquisition are biologically determined. The use of language develops in the absence of formal instruction and appears to follow a very similar pattern in children from vastly different cultures and backgrounds. It would seem, therefore, that we are born with a biological predisposition to acquire a language (Chomsky, 1965; Fernández & Cairns, 2011). Moreover, it appears that there is a critical period for language acquisition, such that this proficiency at acquiring language is maximal early in life; generally, as people age, the ease with which they acquire and master new languages diminishes (Johnson & Newport, 1989; Lenneberg, 1967; Singleton, 1995).

    Children begin to learn about language from a very early age (Table 1). In fact, it appears that this is occurring even before we are born. Newborns show a preference for their mother’s voice and appear to be able to discriminate between the language spoken by their mother and other languages. Babies are also attuned to the languages being used around them and show preferences for videos of faces that are moving in synchrony with the audio of spoken language versus videos that do not synchronize with the audio (Blossom & Morgan, 2006; Pickens, 1994; Spelke & Cortelyou, 1981).

    Table 1. Stages of Language and Communication Development
    Stage Age Developmental Language and Communication
    1 0–3 months Reflexive communication
    2 3–8 months Reflexive communication; interest in others
    3 8–12 months Intentional communication; sociability
    4 12–18 months First words
    5 18–24 months Simple sentences of two words
    6 2–3 years Sentences of three or more words
    7 3–5 years Complex sentences; has conversations

    Each language has its own set of phonemes that are used to generate morphemes, words, and so on. Babies can discriminate among the sounds that make up a language (for example, they can tell the difference between the “s” in vision and the “ss” in fission); early on, they can differentiate between the sounds of all human languages, even those that do not occur in the languages that are used in their environments. However, by the time that they are about 1 year old, they can only discriminate among those phonemes that are used in the language or languages in their environments (Jensen, 2011; Werker & Lalonde, 1988; Werker & Tees, 1984).

    Watch It

    This video explains some of the research surrounding language acquisition in babies, particularly those learning a second language.

    Thumbnail for the embedded element "How Do Babies Become Bilingual?"

    A YouTube element has been excluded from this version of the text. You can view it online here: http://pb.libretexts.org/lsdm/?p=170

    You can view the transcript for “How Do Babies Become Bilingual?” here (opens in new window).

    Newborn Communication

    Wide-eyed baby boy.
    Figure 2. Before they develop language, infants communicate using facial expressions.

    Do newborns communicate? Certainly, they do. They do not, however, communicate with the use of language. Instead, they communicate their thoughts and needs with body posture (being relaxed or still), gestures, cries, and facial expressions. A person who spends adequate time with an infant can learn which cries indicate pain and which ones indicate hunger, discomfort, or frustration.

    Intentional Vocalizations

    Infants begin to vocalize and repeat vocalizations within the first couple of months of life. That gurgling, musical vocalization called cooing can serve as a source of entertainment to an infant who has been laid down for a nap or seated in a carrier on a car ride. Cooing serves as practice for vocalization. It also allows the infant to hear the sound of their own voice and try to repeat sounds that are entertaining. Infants also begin to learn the pace and pause of conversation as they alternate their vocalization with that of someone else and then take their turn again when the other person’s vocalization has stopped. Cooing initially involves making vowel sounds like “oooo.” Later, as the baby moves into babbling (see below), consonants are added to vocalizations such as “nananananana.”

    Babbling and Gesturing

    Between 6 and 9 months, infants begin making even more elaborate vocalizations that include the sounds required for any language. Guttural sounds, clicks, consonants, and vowel sounds stand ready to equip the child with the ability to repeat whatever sounds are characteristic of the language heard. These babies repeat certain syllables (ma-ma-ma, da-da-da, ba-ba-ba), a vocalization called babbling because of the way it sounds. Eventually, these sounds will no longer be used as the infant grows more accustomed to a particular language. Deaf babies also use gestures to communicate wants, reactions, and feelings. Because gesturing seems to be easier than vocalization for some toddlers, sign language is sometimes taught to enhance one’s ability to communicate by making use of the ease of gesturing. The rhythm and pattern of language are used when deaf babies sign just as when hearing babies babble.

    At around ten months of age, infants can understand more than they can say. You may have experienced this phenomenon as well if you have ever tried to learn a second language. You may have been able to follow a conversation more easily than to contribute to it.

    Holophrasic Speech

    Children begin using their first words at about 12 or 13 months of age and may use partial words to convey thoughts at even younger ages. These one-word expressions are referred to as holophrasic speech (holophrase). For example, the child may say “ju” for the word “juice” and use this sound when referring to a bottle. The listener must interpret the meaning of the holophrase. When this is someone who has spent time with the child, interpretation is not too difficult. They know that “ju” means “juice” which means the baby wants some milk! But, someone who has not been around the child will have trouble knowing what is meant. Imagine the parent who exclaims to a friend, “Ezra’s talking all the time now!” The friend hears only “ju da ga” which, the parent explains, means “I want some milk when I go with Daddy.”

    Underextension

    A child who learns that a word stands for an object may initially think that the word can be used for only that particular object. Only the family’s Irish Setter is a “doggie.” This is referred to as underextension. More often, however, a child may think that a label applies to all objects that are similar to the original object. In overextension, all animals become “doggies,” for example.

    First words and cultural influences

    First words for English-speaking children tend to be nouns. The child labels objects such as a cup or a ball. In a verb-friendly language such as Chinese, however, children may learn more verbs. This may also be due to the different emphasis given to objects based on culture. Chinese children may be taught to notice action and relationship between objects while children from the United States may be taught to name an object and its qualities (color, texture, size, etc.). These differences can be seen when comparing interpretations of art by older students from China and the United States.

    Vocabulary growth spurt

    One-year-olds typically have a vocabulary of about 50 words. But by the time they become toddlers, they have a vocabulary of about 200 words and begin putting those words together in telegraphic speech (short phrases). This language growth spurt is called the naming explosion because many early words are nouns (persons, places, or things).

    Two-word sentences and telegraphic speech

    Words are soon combined and 18-month-old toddlers can express themselves further by using phrases such as “baby bye-bye” or “doggie pretty.” Words needed to convey messages are used, but the articles and other parts of speech necessary for grammatical correctness are not yet included. These expressions sound like a telegraph (or perhaps a better analogy today would be that they read like a text message) where unnecessary words are not used. “Give baby ball” is used rather than “Give the baby the ball.” Or a text message of “Send money now!” rather than “Dear Mother. I really need some money to take care of my expenses.” You get the idea.

    Child-directed speech

    Why is a horse a “horsie”? Have you ever wondered why adults tend to use “baby talk” or that sing-song type of intonation and exaggeration used when talking to children? This represents a universal tendency and is known as child-directed speech or motherese or parentese. It involves exaggerating the vowel and consonant sounds, using a high-pitched voice, and delivering the phrase with great facial expression. Why is this done? It may be in order to clearly articulate the sounds of a word so that the child can hear the sounds involved. Or it may be because when this type of speech is used, the infant pays more attention to the speaker and this sets up a pattern of interaction in which the speaker and listener are in tune with one another. When I demonstrate this in class, the students certainly pay attention and look my way. Amazing! It also works in the college classroom!

    Watch It

    This video examines new research on infant-directed speech.

    Thumbnail for the embedded element "Why Baby Talk Is Good for Babies"

    A YouTube element has been excluded from this version of the text. You can view it online here: http://pb.libretexts.org/lsdm/?p=170

    You can view the transcript for “Why Baby Talk Is Good for Babies” here (opens in new window).

    Theories of Language Development

    How is language learned? Each major theory of language development emphasizes different aspects of language learning: that infants’ brains are genetically attuned to language, that infants must be taught, and that infants’ social impulses foster language learning. The first two theories of language development represent two extremes in the level of interaction required for language to occur (Berk, 2007).

    Chomsky and the language acquisition device

    This theory posits that infants teach themselves and that language learning is genetically programmed. The view is known as nativism and was advocated by Noam Chomsky, who suggested that infants are equipped with a neurological construct referred to as the language acquisition device (LAD), which makes infants ready for language. The LAD allows children, as their brains develop, to derive the rules of grammar quickly and effectively from the speech they hear every day. Therefore, language develops as long as the infant is exposed to it. No teaching, training, or reinforcement is required for language to develop. Instead, language learning comes from a particular gene, brain maturation, and the overall human impulse to imitate.

    Skinner and reinforcement

    This theory is the opposite of Chomsky’s theory because it suggests that infants need to be taught language. This idea arises from behaviorism. Learning theorist, B. F. Skinner, suggested that language develops through the use of reinforcement. Sounds, words, gestures, and phrases are encouraged by following the behavior with attention, words of praise, treats, or anything that increases the likelihood that the behavior will be repeated. This repetition strengthens associations, so infants learn the language faster as parents speak to them often. For example, when a baby says “ma-ma,” the mother smiles and repeats the sound while showing the baby attention. So, “ma-ma” is repeated due to this reinforcement.

    Social pragmatics

    Another language theory emphasizes the child’s active engagement in learning the language out of a need to communicate. Social impulses foster infant language because humans are social beings and we must communicate because we are dependent on each other for survival. The child seeks information, memorizes terms, imitates the speech heard from others, and learns to conceptualize using words as language is acquired. Tomasello & Herrmann (2010) argue that all human infants, as opposed to chimpanzees, seek to master words and grammar in order to join the social world [1] Many would argue that all three of these theories (Chomsky’s argument for nativism, conditioning, and social pragmatics) are important for fostering the acquisition of language (Berger, 2004).

    Glossary

    [glossary-page]
    [glossary-term]babbling:[/glossary-term]
    [glossary-definition]an infant’s repetition of certain syllables, such as ba-ba-ba, that begins when babies are between 6 and 9 months old[/glossary-definition]

    [glossary-term]holophrase:[/glossary-term]
    [glossary-definition]a single word that is used to express a complete, meaningful thought[/glossary-definition]

    [glossary-term]language acquisition device (LAD):[/glossary-term]
    [glossary-definition]Chomsky’s term for the hypothesized mental structure that enables humans to learn the language, including the basic aspects of grammar, vocabulary, and intonation[/glossary-definition]

    [glossary-term]morpheme:[/glossary-term]
    [glossary-definition]the smallest unit of language that conveys some type of meaning[/glossary-definition]

    [glossary-term]naming explosion:[/glossary-term]
    [glossary-definition]a sudden increase in an infant’s vocabulary, especially in the number of nouns, that begins at about 18 months of age[/glossary-definition]

    [glossary-term]phoneme:[/glossary-term]
    [glossary-definition]a basic sound unit of a given language[/glossary-definition]
    [/glossary-page]


    1. Tomasello, M. & Hermann, E. (2010). Ape and human cognition. Current Directions in Psychological Science, 19(1), 3-8.

    Contributors and Attributions

    CC licensed content, Original
    • Modification, adaptation, and original content. Authored by: Tera Jones for Lumen Learning. Provided by: Lumen Learning. License: CC BY: Attribution
    CC licensed content, Shared previously
    All rights reserved content

    This page titled 4.9: Language Development is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Lumen Learning.

    • Was this article helpful?