Skip to main content
Social Sci LibreTexts

2.9: References

  • Page ID
    236862
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Introduction

    Feyissa A.M., Carrano A., Wang X., Allen M., Ertekin-Taner N., Dickson D.W., Jentoft M.E., Rosenfeld S.S., Tatum W.O., Ritaccio A.L., Guerrero-Cázares H., &Quiñones-Hinojosa A. (2021). Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Research, 173, 106618. https://doi.org/10.1016/j.eplepsyres.2021.106618

    Quiñones-Hinojosa, A. (2011). Becoming Dr. Q: My journey from migrant farm worker to brain surgeon. University of California Press.

    2.1 Neural Communication

    Anctil, M. (2015). Dawn of the neuron: The early struggles to trace the origin of nervous systems. McGill-Queen’s University Press.

    Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109,(Supplement 1), 10661–10668. doi.org/10.1073/pnas.1201895109

    Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J.G., Nyengaard, J.R., & Regeur, L. (2003). Aging and the human neocortex. Experimental Gerontology, 38(1), 95–99. https://doi.org/10.1016/S0531-5565(02)00151-1

    Testa-Silva, G., Verhoog, M.B., Linaro, D., de Kock, C.P.J., Baayen, J.C., Meredith, R.M., De Zeeuw, C.I., Giugliano, M., & Mansvelder, H.D. (2014). High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biology, 12, (11), e1002007. https://doi.org/10.1371/journal.pbio.1002007

    Todnem, K., Knudsen, G., Riise, T., Nyland, H., & Aarli, J.A. (1989). The non-linear relationship between nerve conduction velocity and skin temperature. Journal of Neurology, Neurosurgery and Psychiatry, 52,(4), 497–501. https://doi.org/10.1136/jnnp.52.4.497

    2.2 Neural Circuits

    Balasubramanian, V. (2021.) Brain power. Proceedings of the National Academy of Sciences, 118(32), e2107022118. doi.org/10.1073/pnas.2107022118

    Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., & Deadwyler, S.A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8(4), 046017. https://doi.org/10.1088/1741-2560/8/4/046017

    Berger, T.W., Song, D., Chan, R.H.M., Marmarelis, V.Z., LaCoss, J., Wills, J., Hampson, R.E., Deadwyler, S.A., & Granacki, J.J. (2012). A hippocampal cognitive prosthesis: Multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 198–211. doi.org/10.1109/TNSRE.2012.2189133

    Brown, G.D. (1998). Nonassociative learning processes affecting swimming probability in the seaslug Tritonia diomedea: habituation, sensitization and inhibition. Behavioural Brain Research, 95(2), 151–165. https://doi.org/10.1016/S0166-4328(98)00072-2

    Calin-Jageman, R.J., Tunstall, M.J., Mensh, B.D., Katz, P.S., & Frost, W.N. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. Journal of Neurophysiology, 98(4), 2382–2398. doi.org/10.1152/jn.00572.2007

    Deadwyler, S.A., Berger, T.W., Sweatt, A.J., Song, D., Chan, R.H.M., Opris, I., Gerhardt, G.A., Marmarelis, V.Z., & Hampson, R.E. (2013). Donor/recipient enhancement of memory in rat hippocampus. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00120

    Getting, P.A. (1983). Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. Journal of Neurophysiology,, 49(4), 1017–1035. doi.org/10.1152/jn.1983.49.4.1017

    Hampson, R.E., Song, D., Robinson, B.S., Fetterhoff, D., Dakos, A.S., Roeder, B.M., She, X., Wicks, R.T., Witcher, M.R., Couture, D.E., Laxton, A.W., Munger-Clary, H., Popli, G., Sollman, M.J., Whitlow, C.T., Marmarelis, V.Z., Berger, T.W., & Deadwyler, S.A. (2018). Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. Journal of Neural Engineering, 15(3), 036014. https://doi.org/10.1088/1741-2552/aaaed7

    Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109(Supplement 1), 10661–10668. doi.org/10.1073/pnas.1201895109

    Hoppe, T. (1998). An evaluation of the role of synaptic depression at afferent synapses in habituation of the escape swim response of Tritonia diomedea. Master's thesis,The University of Texas Health Science Center at Houston.

    Katz, P.S., & Frost, W.N. (1997). Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator. Journal of Neuroscience, 17,(20), 7703–7713. https://doi.org/10.1523/jneurosci.17-20-07703.1997

    Willows, A.O.D., & Hoyle, G. (1969). Neuronal network triggering a fixed action pattern. Science, 166(3912), 1549–1551. doi.org/10.1126/science.166.3912.1549

    2.3 Principles of Bioelectricity

    Erecińska, M., & Silver, I.A. (1994). Ions and energy in mammalian brain. Progress in Neurobiology, 43(1), 37–71. https://doi.org/10.1016/0301-0082(94)90015-9

    Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D., & Cohen, A.E. (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods, 9(1), 90–95. https://doi.org/10.1038/nmeth.1782

    2.4 Mechanisms of Neural Signaling

    Eyal, G., Verhoog, M.B., Testa-Silva, G., Deitcher, Y., Piccione, R.B., DeFelipe, J., de Kock, C.P.J., Mansvelder, H.D., & Segev, I. (2018). Human cortical pyramidal neurons: From spines to spikes via models. Frontiers in Cellular Neuroscience, 12, 181. https://doi.org/10.3389/fncel.2018.00181

    Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. https://doi.org/10.1016/S0960-9822(03)00135-0

    Viscardi, L.H., Imparato, D.O., Bortolini, M.C., & Dalmolin, R.J.S. (2021). Ionotropic receptors as a driving force behind human synapse establishment. Molecular Biology and Evolution, 38(3), 735–744. doi.org/10.1093/molbev/msaa252

    2.5 Our Deep but Still Incomplete Understanding of Neural Signaling

    Allen, N.J., & Lyons, D.A. (2018). Glia as architects of central nervous system formation and function. Science, 362(6411), 181–185. doi.org/10.1126/science.aat0473

    Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Kalmbach, B.E., Crow, M., Hodge, R.D., Krienen, F.M., Sorensen, S.A., Eggermont, J., Yao, Z., Aevermann, B.D., Aldridge, A.I., Bartlett, A., Bertagnolli, D., Casper, T., Castanon, R.G., Crichton, K., Dalley, R., ... Lein, E.S. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598 111–119. https://doi.org/10.1038/s41586-021-03465-8

    Hirose, S. (2014). Mutant GABAA receptor subunits in genetic (idiopathic) epilepsy. Progress in Brain Research, 213, 55–85. https://doi.org/10.1016/B978-0-444-63326-2.00003-X

    Marder, E., & Goaillard, J.-M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews. Neuroscience, 7(7), 563–574. https://doi.org/10.1038/nrn1949

    Miura, D.S., & Rosen, M.R. (1978). The effects of ouabain on the transmembrane potentials and intracellular potassium activity of canine cardiac Purkinje fibers. Circulation Research, 42(3), 333–338. doi.org/10.1161/01.RES.42.3.333

    Noguchi, T., & Arakawa, O. (2008). Tetrodotoxin – distribution and accumulation in aquatic organisms, and cases of human intoxication. Marine Drugs, 6(2), 220–242. doi.org/10.3390/md20080011

    Stuart, G., Spruston, N., Sakmann, B., & Häusser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences, 20(3), 125–131. https://doi.org/10.1016/S0166-2236(96)10075-8


    This page titled 2.9: References is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?