36.5: Treatment Of Schizophrenia
- Page ID
- 77104
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The currently available treatments for schizophrenia leave much to be desired, and the search for more effective treatments for both the psychotic symptoms of schizophrenia (e.g., hallucinations and delusions) as well as cognitive deficits and negative symptoms is a highly active area of research. The first line of treatment for schizophrenia and other psychotic disorders is the use of antipsychotic medications. There are two primary types of antipsychotic medications, referred to as “typical” and “atypical.” The fact that “typical” antipsychotics helped some symptoms of schizophrenia was discovered serendipitously more than 60 years ago (Carpenter & Davis, 2012; López-Muñoz et al., 2005). These are drugs that all share a common feature of being a strong block of the D2 type dopamine receptor. Although these drugs can help reduce hallucinations, delusions, and disorganized speech, they do little to improve cognitive deficits or negative symptoms and can be associated with distressing motor side effects. The newer generation of antipsychotics is referred to as “atypical” antipsychotics. These drugs have more mixed mechanisms of action in terms of the receptor types that they influence, though most of them also influence D2 receptors. These newer antipsychotics are not necessarily more helpful for schizophrenia but have fewer motor side effects. How- ever, many of the atypical antipsychotics are associated with side effects referred to as the “metabolic syndrome,” which includes weight gain and increased risk for cardiovascular ill- ness, type 2 diabetes, and mortality (Lieberman et al., 2005).
The evidence that cognitive deficits also contribute to functional impairment in schizophrenia has led to an increased search for treatments that might enhance cognitive function in schizophrenia. Unfortunately, as of yet, there are no pharmacological treatments that work consistently to improve cognition in schizophrenia, although many new types of drugs are currently under exploration. However, there is a type of psychological intervention, referred to as cognitive remediation, that has shown some evidence of helping cognition and function in schizophrenia. In particular, a version of this treatment called cognitive enhancement therapy (CET) has been shown to improve cognition, functional outcome, and social cognition and to protect against gray matter loss (Eack et al., 2009; Eack, Greenwald, et al., 2010; Eack, Hogarty, et al., 2010; Eack et al., 2011; Hogarty et al., 2006) in young individuals with schizophrenia. The development of new treatments such as cognitive enhancement therapy provides some hope that we will be able to develop new and better approaches to improving the lives of individuals with this serious mental health condition and potentially even prevent it some day.
REFERENCES
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi. books.9780890425596
Barch, D. M., & Ceaser, A. E. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Science, 16(1), 27–34. https://doi.org/10.1016/j.tics.2011.11.015
Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919–934. https://doi.org/10.1093/ schbul/sbq068
Barch, D. M., Carter, C. S., & Cohen, J. D. (2003). Context processing deficit in schizophrenia: Diagnostic specificity, 4-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology, 112(1), 132–143. https://doi.org/10.1037/0021-843X.112.1.132
Barch, D. M., Carter, C. S., Macdonald, A., Sabb, F. W., Noll, D. C., & Cohen, J. D. (1999). Prefrontal cortex and context processing in medication-naive first-episode patients with schizophrenia. Schizophrenia Research, 36(1–3), 217–218. https://doi.org/10.1016/ S0920-9964(99)90035-X
Batstra, L., & Frances, A. (2012). Diagnostic inflation: Causes and a suggested cure. The Journal of Nervous and Mental Disease, 200(6), 474–479. https://doi.org/10.1097/NMD.0b013e318257c4a2
Boos, H. B., Aleman, A., Cahn, W., Pol, H. H., & Kahn, R. S. (2007). Brain volumes in relatives of patients with schizophrenia: A meta-analysis. Archives of General Psychiatry, 64(3), 297–304. https://doi.org/ 10.1001/archpsyc.64.3.297
Bora, E., Fornito, A., Radua, J., Walterfang, M., Seal, M., Wood, S. J., Yücel, M., Velakoulis, D., & Pantelis, C. (2011). Neuroanatomical abnormalities in schizophrenia: A multimodal voxelwise meta- analysis and meta-regression analysis. Schizophrenia Research, 127(1–3), 46–57. https://doi.org/10.1016/j.schres.2010.12.020
Bora, E., Yucel, M., & Pantelis, C. (2009a). Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: Meta-analytic study. British Journal of Psychiatry: The Journal of Mental Science, 195(6), 475–482. https://doi.org/10.1192/bjp. bp.108.055731
Bora, E., Yucel, M., & Pantelis, C. (2009b). Theory of mind impairment in schizophrenia: Meta-analysis. Schizophrenia Research, 109(1–3), 1–9. https://doi.org/10.1016/j.schres.2008.12.020
Bourque, F., van der Ven, E., & Malla, A. (2011). A meta-analysis of the risk for psychotic disorders among first- and second-generation immigrants. Psychological Medicine, 41(5), 897–910. https://doi.org/ 10.1017/S0033291710001406
Bowie, C. R., Leung, W. W., Reichenberg, A., McClure, M. M., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2008). Predicting schizophrenia patients’ real-world behavior with specific neuropsychological and functional capacity measures. Biological Psychiatry, 63(5), 505–511. https://doi.org/10.1016/j.biopsych.2007.05.022
Bowie, C. R., Reichenberg, A., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2006). Determinants of real-world functional performance in schizophrenia subjects: Correlations with cognition, functional capacity, and symptoms. American Journal of Psychiatry, 163(3), 418–425. https://doi.org/10.1176/appi.ajp.163.3.418
Brans, R. G. H., van Haren, N. E. M., van Baal, G. C. M., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2008). Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Archives of General Psychiatry, 65(11), 1259–1268. https://doi.org/ 10.1001/archpsyc.65.11.1259
Cannon, M., Jones, P. B., & Murray, R. M. (2002). Obstetric complications and schizophrenia: Historical and meta-analytic review. American Journal of Psychiatry, 159(7), 1080–1092. https://doi.org/10.1176/appi. ajp.159.7.1080
Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., Seidman, L. J., Perkins, D., Tsuang, M., McGlashan, T., & Heinssen, R. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65(1), 28–37. https://doi.org/10.1001/ archgenpsychiatry.2007.3
Carpenter, W. T., Jr., & Davis, J. M. (2012). Another view of the history of antipsychotic drug discovery and development. Molecular Psychiatry, 17(12), 1168–1173. https://doi.org/10.1038/mp.2012.121
Casadio, P., Fernandes, C., Murray, R. M., & Di Forti, M. (2011). Cannabis use in young people: The risk for schizophrenia. Neuroscience & Biobehavioral Reviews, 35(8), 1779–1787. https://doi.org/10.1016/j. neubiorev.2011.04.007
Cohen, A. S., & Minor, K. S. (2010). Emotional experience in patients with schizophrenia revisited: Meta-analysis of laboratory studies. Schizophrenia Bulletin, 36(1), 143–150. https://doi.org/10.1093/schbul/ sbn061
Corlett, P. R., Honey, G. D., & Fletcher, P. C. (2007). From prediction error to psychosis: Ketamine as a pharmacological model of delusions. Journal of Psychopharmacology, 21(3), 238–252. https://doi.org/ 10.1177/0269881107077716
Corlett, P. R., Honey, G. D., Aitken, M. R. F., Dickinson, A., Shanks, D. R., Absalom, A. R., Lee, M., Pomarol-Clotet, E., Murray, G. K., McKenna, P. J., Robbins, T. W., Bullmore, E. T., & Fletcher, P. C. (2006). Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: Linking cognition, brain activity, and psychosis. Archives of General Psychiatry, 63(6), 611–621. https://doi.org/10.1001/ archpsyc.63.6.611
Corlett, P. R., Murray, G. K., Honey, G. D., Aitken, M. R. F., Shanks, D. R., Robbins, T. W., Bullmore, E. T., Dickinson, A., & Fletcher, P. C. (2007). Disrupted prediction-error signal in psychosis: Evidence for an associative account of delusions. Brain, 130(9), 2387–2400. https:// doi.org/10.1093/brain/awm173
de Gracia Dominguez, M., Viechtbauer, W., Simons, C. J. P., van Os, J., & Krabbendam, L. (2009). Are psychotic psychopathology and neurocognition orthogonal? A systematic review of their associations. Psychological Bulletin, 135(1), 157–171. https://doi.org/10.1037/ a0014415
Eack, S. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). One-year durability of the effects of cognitive enhancement therapy on functional outcome in early schizophrenia. Schizophrenia Research, 120(1–3), 210–216. https://doi.org/10.1016/j. schres.2010.03.042
Eack, S. M., Greenwald, D. P., Hogarty, S. S., Cooley, S. J., DiBarry, A. L., Montrose, D. M., & Keshavan, M. S. (2009). Cognitive enhancement therapy for early-course schizophrenia: effects of a two-year randomized controlled trial. Psychiatric Services, 60(11), 1468–1476. https://doi.org/10.1176/ps.2009.60.11.1468
Eack, S. M., Hogarty, G. E., Cho, R. Y., Prasad, K. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: Results from a 2-year randomized controlled trial. Archives of General Psychiatry, 67(7), 674–682. https://doi.org/ 10.1001/archgenpsychiatry.2010.63
Eack, S. M., Pogue-Geile, M. F., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2011). Mechanisms of functional improvement in a 2-year trial of cognitive enhancement therapy for early schizophrenia. Psychological Medicine, 41(6), 1253–1261. https://doi. org/10.1017/S0033291710001765
Fett, A. K., Viechtbauer, W., Dominguez, M. D., Penn, D. L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 573–588. https://doi.org/10.1016/j.neubiorev.2010.07.001
Fioravanti, M., Carlone, O., Vitale, B., Cinti, M. E., & Clare, L. (2005). A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review, 15(2), 73–95. https://doi. org/10.1007/s11065-005-6254-9
Fletcher, P. C., Frith, C. D., Grasby, P. M., Shallice, T., Frackowiak, R. S. J., & Dolan, R. J. (1995). Brain systems for encoding and retrieval of auditory-verbal memory: An in vivo study in humans. Brain, 118(2), 401–416. https://doi.org/10.1093/brain/118.2.401
Forbes, N. F., Carrick, L. A., McIntosh, A. M., & Lawrie, S. M. (2009). Working memory in schizophrenia: A meta-analysis. Psychological Medicine, 39(6), 889–905. https://doi.org/10.1017/ S0033291708004558
Fusar-Poli, P., & Yung, A. R. (2012). Should attenuated psychosis syndrome be included in DSM-5? The Lancet, 379(9816), 591–592. https://doi.org/10.1016/S0140-6736(11)61507-9
Fusar-Poli, P., McGuire, P., & Borgwardt, S. (2012). Mapping prodromal psychosis: A critical review of neuroimaging studies. European Psychiatry, 27(3), 181–191. https://doi.org/10.1016/j.eurpsy.2011.06.006
Fusar-Poli, P., Perez, J., Broome, M., Borgwardt, S., Placentino, A., Caverzasi, E., Cortesi, M., Veggiotti, P., Politi, P., Barale, F., & McGuire, P. (2007). Neurofunctional correlates of vulnerability to psychosis: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 31(4), 465–484. https://doi.org/10.1016/j. neubiorev.2006.11.006
Gejman, P. V., Sanders, A. R., & Kendler, K. S. (2011). Genetics of schizophrenia: New findings and challenges. Annual Review of Genomics and Human Genetics, 12(1), 121–144. https://doi.org/10.1146/ annurev-genom-082410-101459
Gottesman, I. I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences, 58(1), 199–205. https://doi.org/10.1073/pnas.58.1.199
Green, M. F. (2006). Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. The Journal of Clinical Psychiatry, 67(Suppl. 9), 3–8.
Heckers, S., & Konradi, C. (2010). Hippocampal pathology in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 529–553. https://doi.org/10.1007/7854_2010_43
Hoe, M., Nakagami, E., Green, M. F., & Brekke, J. S. (2012). The causal relationships between neurocognition, social cognition, and functional outcome over time in schizophrenia: A latent difference score approach. Psychological Medicine, 42(11), 2287–2299. https:// doi.org/10.1017/S0033291712000578
Hogarty, G. E., Greenwald, D. P., & Eack, S. M. (2006). Durability and mechanism of effects of cognitive enhancement therapy. Psychiatric Services, 57(12), 1751–1757. https://dx.doi.org/10.1176/appi. ps.57.12.1751
Jensen, J., & Kapur, S. (2009). Salience and psychosis: Moving from theory to practise. Psychological Medicine, 39(2), 197–198. https:// doi.org/10.1017/S0033291708003899
Jensen, J., Willeit, M., Zipursky, R. B., Savina, I., Smith, A. J., Menon, M., Crawley, A. P., & Kapur, S. (2008). The formation of abnormal associations in schizophrenia: Neural and behavioral evidence. Neuropsychopharmacology, 33(3), 473–479. https://doi.org/10.1038/ sj.npp.1301437
Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160(1), 13–23. https://doi.org/10.1176/ appi.ajp.160.1.13
Kapur, S., Mizrahi, R., & Li, M. (2005). From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis. Schizophrenia Research, 79(1), 59–68. https://doi. org/10.1016/j.schres.2005.01.003
Karlsgodt, K. H., van Erp, T. G. M., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63(5), 512–518. https://doi.org/10.1016/j.biopsych.2007.06.017
Kerr, S. L., & Neale, J. M. (1993). Emotion perception in schizophrenia: Specific deficit or further evidence of generalized poor performance? Journal of Abnormal Psychology, 102(2), 312–318. https://doi.org/10.1037/0021-843X.102.2.312
Kim, J.-J., Kwon, J. S., Park, H. J., Youn, T., Kang, D. H., Kim, M. S., Lee, D. S., & Lee, M. C. (2003). Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: A [15O]H2O PET study. American Journal of Psychiatry, 160(5), 919–923. https://doi.org/10.1176/appi.ajp.160.5.919
Kim, Y., Zerwas, S., Trace, S. E., & Sullivan, P. F. (2011). Schizophrenia genetics: Where next? Schizophrenia Bulletin, 37(3), 456–463. https://doi.org/10.1093/schbul/sbr031
Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M., & Moberg, P. J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36(5), 1009–1019. https://doi.org/ 10.1093/schbul/sbn192
Kring, A. M., & Moran, E. K. (2008). Emotional response deficits in schizophrenia: Insights from affective science. Schizophrenia Bulletin, 34(5), 819–834. https://doi.org/10.1093/schbul/sbn071
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., Keefe, R. S. E., Davis, S. M., Davis, C. E., Lebowitz, B. D., Severe, J., & Hsiao, J. K. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England Journal of Medicine, 353(12), 1209–1223. https://doi.org/ 10.1056/NEJMoa051688
Llerena, K., Strauss, G. P., & Cohen, A. S. (2012). Looking at the other side of the coin: A meta-analysis of self-reported emotional arousal in people with schizophrenia. Schizophrenia Research, 142(1–3), 65–70. https://doi.org/10.1016/j.schres.2012.09.005
López-Muñoz, F., Alamo, C., Cuenca, E., Shen, W. W., Clervoy, P., & Rubio, G. (2005). History of the discovery and clinical introduction of chlorpromazine. Annals of Clinical Psychiatry, 17(3), 113–135. https:// doi.org/10.1080/10401230591002002
Luzi, S., Morrison, P. D., Powell, J., Di Forti, M., & Murray, R. M. (2008). What is the mechanism whereby cannabis use increases risk of psychosis? Neurotoxicity Research, 14(2–3), 105–112. https://doi. org/10.1007/BF03033802
MacDonald, A. W., III, Thermenos, H. W., Barch, D. M., & Seidman, L. J. (2009). Imaging genetic liability to schizophrenia: Systematic review of fMRI studies of patients’ nonpsychotic relatives. Schizophrenia Bulletin, 35(6), 1142–1162. https://doi.org/10.1093/schbul/sbn053
Mamah, D., Mbwayo, A., Mutiso, V., Barch, D. M., Constantino, J. N., Nsofor, T., Khasakhala, L., & Ndetei, D. M. (2012). A survey of psychosis risk symptoms in Kenya. Comprehensive Psychiatry, 53(5), 516–524. https://doi.org/10.1016/j.comppsych.2011.08.003
March, D., Hatch, S. L., Morgan, C., Kirkbride, J. B., Bresnahan, M., Fearon, P., & Susser, E. (2008). Psychosis and place. Epidemiologic Reviews, 30(1), 84–100. https://doi.org/10.1093/epirev/mxn006
Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology, 23(3), 315–336. https://doi. org/10.1037/a0014708
Meyer-Lindenberg, A., Poline, J., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158(11), 1809–1817. https://doi.org/10.1176/appi.ajp.158.11.1809
Miller, B., Messias, E., Miettunen, J., Alaräisänen, A., Järvelin, M.-R., Koponen, H., Räsänen, P., Isohanni, M., & Kirkpatrick, B. (2011). Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophrenia Bulletin, 37(5), 1039–1047. https:// doi.org/10.1093/schbul/sbq011
Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822. https://doi.org/10.1001/archgenpsychiatry.2009.91
Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., Jones, P. B., Bullmore, E. T., Robbins, T. W., & Fletcher, P. C. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 267–276. https:// doi.org/10.1038/sj.mp.4002058
Ndetei, D. M., Muriungi, S. K., Owoso, A., Mutiso, V. N., Mbwayo, A. W., Khasakhala, L. I., Barch, D. M., & Mamah, D. (2012). Prevalence and characteristics of psychotic-like experiences in Kenyan youth. Psychiatry Research, 196(2–3), 235–242. https://doi.org/10.1016/j. psychres.2011.12.053
Nuechterlein, K. H., Subotnik, K. L., Green, M. F., Ventura, J., Asarnow,
R. F., Gitlin, M. J., Yee, C. M., Gretchen-Doorly, D., & Mintz, J. (2011). Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophrenia Bulletin, 37(Suppl. 2), S33–S40. https:// doi.org/10.1093/schbul/sbr084
Olabi, B., Ellison-Wright, I., McIntosh, A. M., Wood, S. J., Bullmore, E., & Lawrie, S. M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological Psychiatry, 70(1), 88–96. https://doi. org/10.1016/j.biopsych.2011.01.032
Owen, M. J., Craddock, N., & O’Donovan, M. C. (2010). Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Archives of General Psychiatry, 67(7), 667–673. https://doi.org/10.1001/archgenpsychiatry.2010.69
Preti, A., & Cella, M. (2010). Randomized-controlled trials in people at ultra high risk of psychosis: a review of treatment effectiveness. Schizophrenia Research, 123(1), 30–36. https://doi.org/10.1016/j. schres.2010.07.026
Ragland, J. D., Laird, A. R., Ranganath, C., Blumenfeld, R. S., Gonzales, S. M., & Glahn, D. C. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. American Journal of Psychiatry, 166(8), 863–874. https://doi.org/10.1176/appi.ajp.2009.08091307
Repovš, G., & Barch, D. M. (2012). Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Frontiers in Human Neuroscience, 6, 137. https://doi.org/10.3389/ fnhum.2012.00137
Rutter, M., Kim-Cohen, J., & Maughan, B. (2006). Continuities and discontinuities in psychopathology between childhood and adult life. Journal of Child Psychology and Psychiatry, 47(3–4), 276–295. https://doi.org/10.1111/j.1469-7610.2006.01614.x
Schlösser, R., Gesierich, T., Kaufmann, B., Vucurevic, G., Hunsche, S., Gawehn, J., & Stoeter, P. (2003). Altered effective connectivity during working memory performance in schizophrenia: A study with fMRI and structural equation modeling. NeuroImage, 19(3), 751–763. https://doi.org/10.1016/S1053-8119(03)00106-X
Snitz, B. E., MacDonald, A. W., III, & Carter, C. S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: A meta-analytic review of putative endophenotypes. Schizophrenia Bulletin, 32(1), 179–194. https://doi.org/10.1093/schbul/sbi048
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231. https://doi.org/10.1037/0033-295X.99.2.195
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187–1192. https://doi.org/10.1001/ archpsyc.60.12.1187
Ventura, J., Hellemann, G. S., Thames, A. D., Koellner, V., & Nuechterlein, K. H. (2009). Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: a meta-analysis. Schizophrenia Research, 113(2–3), 189–199. https:// doi.org/10.1016/j.schres.2009.03.035
Ventura, J., Thames, A. D., Wood, R. C., Guzik, L. H., & Hellemann, G. S. (2010). Disorganization and reality distortion in schizophrenia: a meta-analysis of the relationship between positive symptoms and neurocognitive deficits. Schizophrenia Research, 121(1–3), 1–14. https://doi.org/10.1016/j.schres.2010.05.033
Ventura, J., Wood, R. C., & Hellemann, G. S. (2011). Symptom domains and neurocognitive functioning can help differentiate social cognitive processes in schizophrenia: A meta-analysis. Schizophrenia Bulletin, 39(1), 102–111. https://doi.org/10.1093/schbul/sbr067
Verdoux, H., & van Os, J. (2002). Psychotic symptoms in non-clinical populations and the continuum of psychosis. Schizophrenia Research, 54(1–2), 59–65. https://doi.org/10.1016/ S0920-9964(01)00352-8
van Hooren, S., Versmissen, D., Janssen, I., Myin-Germeys, I., à Campo, J., Mengelers, R., van Os, J., & Krabbendam, L. (2008). Social cognition and neurocognition as independent domains in psychosis. Schizophrenia Research, 103(1–3), 257–265. https://doi.org/10.1016/j. schres.2008.02.022