Skip to main content
Social Sci LibreTexts

3.1: Evolutionary Theories in Psychology

  • Page ID
    181857
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    • Demonstrate an understanding of what “evolution” means.
    • Describe the primary mechanisms by which evolution takes place.
    • Define sexual and gene selection theories.
    • Define gene selection theory.
    • Explain psychological adaptations.

    Overview

    Evolution or change over time occurs through the processes of natural and sexual selection. In response to problems in our environment, we adapt both physically and psychologically to ensure our survival and reproduction. Sexual selection theory describes how evolution has shaped us to provide a mating advantage rather than just a survival advantage and occurs through two distinct pathways: intrasexual competition and intersexual selection. Gene selection theory, the modern explanation behind evolutionary biology, occurs through the desire for gene replication. Evolutionary psychology connects evolutionary principles with modern psychology and focuses primarily on psychological adaptations: changes in the way we think in order to improve our survival.

    Basics of Evolutionary Theory

    Evolution simply means change over time. Many think of evolution as the development of traits and behaviors that allow us to survive this “dog-eat-dog” world, like strong leg muscles to run fast, or fists to punch and defend ourselves. However, physical survival is only important if it eventually contributes to successful reproduction. That is, even if you live to be a 100-year-old, if you fail to mate and produce children, your genes will die with your body. Thus, reproductive success, not survival success, is the engine of evolution by natural selection. Every mating success by one person means the loss of a mating opportunity for another. Yet every living human being is an evolutionary success story. Each of us is descended from a long and unbroken line of ancestors who triumphed over others in the struggle to survive (at least long enough to mate) and reproduce. However, in order for our genes to endure over time—to survive harsh climates, to defeat predators—we have inherited adaptive, psychological processes designed to ensure success.

    At the broadest level, we can think of organisms, including humans, as having two large classes of adaptations—or traits and behaviors that evolved over time to increase our reproductive success. The first class of adaptations are called survival adaptations: mechanisms that helped our ancestors handle the “hostile forces of nature.” For example, in order to survive very hot temperatures, we developed sweat glands to cool ourselves. In order to survive very cold temperatures, we developed shivering mechanisms (the speedy contraction and expansion of muscles to produce warmth). Other examples of survival adaptations include developing a craving for fats and sugars, encouraging us to seek out particular foods rich in fats and sugars that keep us going longer during food shortages. Some threats, such as snakes, spiders, darkness, heights, and strangers, often produce fear in us, which encourages us to avoid them and thereby stay safe. These are also examples of survival adaptations. However, all of these adaptations are for physical survival, whereas the second class of adaptations are for reproduction, and help us compete for mates. These adaptations are described in an evolutionary theory proposed by Charles Darwin, called sexual selection theory.

    Sexual Selection Theory

    Darwin noticed that there were many traits and behaviors of organisms that could not be explained by “survival selection.” For example, the brilliant plumage of peacocks should actually lower their rates of survival. That is, the peacocks’ feathers act like a neon sign to predators, advertising “Easy, delicious dinner here!” But if these bright feathers only lower peacocks’ chances at survival, why do they have them? The same can be asked of similar characteristics of other animals, such as the large antlers of male stags or the wattles of roosters, which also seem to be unfavorable to survival. Again, if these traits only make the animals less likely to survive, why did they develop in the first place? And how have these animals continued to survive with these traits over thousands and thousands of years? Darwin’s answer to this conundrum was the theory of sexual selection: the evolution of characteristics, not because of survival advantage, but because of mating advantage.

    Sexual selection occurs through two processes. The first, intrasexual competition, occurs when members of one sex compete against each other, and the winner gets to mate with a member of the opposite sex. The second process of sexual selection is preferential mate choice, also called intersexual selection. In this process, if members of one sex are attracted to certain qualities in mates—such as brilliant plumage, signs of good health, or even intelligence—those desired qualities get passed on in greater numbers, simply because their possessors mate more often.

    Gene Selection Theory

    In modern evolutionary theory, all evolutionary processes boil down to an organism’s genes. Genes are the basic “units of heredity,” or the information that is passed along in DNA that tells the cells and molecules how to “build” the organism and how that organism should behave. Genes that are better able to encourage the organism to reproduce, and thus replicate themselves in the organism’s offspring, have an advantage over competing genes that are less able. For example, take female sloths: In order to attract a mate, they will scream as loudly as they can, to let potential mates know where they are in the thick jungle. Now, consider two types of genes in female sloths: one gene that allows them to scream extremely loudly, and another that only allows them to scream moderately loudly. In this case, the sloth with the gene that allows her to shout louder will attract more mates—increasing reproductive success—which ensures that her genes are more readily passed on than those of the quieter sloth.

    Essentially, genes can boost their own replicative success in two basic ways. First, they can influence the odds for survival and reproduction of the organism they are in (individual reproductive success or fitness—as in the example with the sloths). Second, genes can also influence the organism to help other organisms who also likely contain those genes—known as “genetic relatives”—to survive and reproduce (which is called inclusive fitness).

    Evolutionary Psychology

    Evolutionary psychology aims the lens of modern evolutionary theory on the workings of the human mind. It focuses primarily on psychological adaptations: mechanisms of the mind that have evolved to solve specific problems of survival or reproduction. These kinds of adaptations are in contrast to physiological adaptations, which are adaptations that occur in the body as a consequence of one’s environment. One example of a physiological adaptation is how our skin makes calluses. First, there is an “input,” such as repeated friction to the skin on the bottom of our feet from walking. Second, there is a “procedure,” in which the skin grows new skin cells at the afflicted area. Third, an actual callus forms as an “output” to protect the underlying tissue—the final outcome of the physiological adaptation (i.e., tougher skin to protect repeatedly scraped areas). On the other hand, a psychological adaptation is a development or change of a mechanism in the mind. For example, take sexual jealousy. First, there is an “input,” such as a romantic partner flirting with a rival. Second, there is a “procedure,” in which the person evaluates the threat the rival poses to the romantic relationship. Third, there is a behavioral output, which might range from vigilance (e.g., snooping through a partner’s email) to violence (e.g., threatening the rival). Although such behaviors serve a purpose for the jealous person, they can be harmful to others.

    Evolutionary psychology is fundamentally an interactionist framework, or a theory that takes into account multiple factors when determining the outcome. For example, jealousy, like a callus, doesn’t simply pop up out of nowhere. There is an “interaction” between the environmental trigger (e.g., the flirting; the repeated rubbing of the skin) and the initial response (e.g., evaluation of the flirter’s threat; the forming of new skin cells) to produce the outcome.

    Evolutionary Psychology and Cultural Influences

    In evolutionary psychology, culture also has a major effect on psychological adaptations. For example, status within one’s group is important in all cultures for achieving reproductive success, because higher status makes someone more attractive to mates. In individualistic cultures, such as the United States, status is heavily determined by individual accomplishments. But in more collectivist cultures, such as Japan, status is more heavily determined by contributions to the group and by that group’s success. For example, consider a group project. If you were to put in most of the effort on a successful group project, the culture in the United States reinforces the psychological adaptation to try to claim that success for yourself (because individual achievements are rewarded with higher status). However, the culture in Japan reinforces the psychological adaptation to attribute that success to the whole group (because collective achievements are rewarded with higher status). Evolutionary psychology, in short, does not predict rigid robotic-like “instincts.” That is, there isn’t one rule that works all the time. Rather, evolutionary psychology studies flexible, environmentally-connected and culturally-influenced adaptations that vary according to the situation.

    Psychological adaptations are hypothesized to be wide-ranging, and include food preferences, habitat preferences, mate preferences, and specialized fears. These psychological adaptations also include many traits that improve people's ability to live in groups, such as the desire to cooperate and make friends, or the inclination to spot and avoid frauds, punish rivals, establish status hierarchies, nurture children, and help genetic relatives. Research programs in evolutionary psychology develop and empirically test predictions about the nature of psychological adaptations.

    Attributions

    Adapted from Evolutionary Theories in Psychology by David Buss, in R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology as a Biological Science . Champaign, IL: DEF publishers. Retrieved from http://noba.to/tvz92edh. Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


    3.1: Evolutionary Theories in Psychology is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.