Skip to main content
Social Sci LibreTexts

4.10: References

  • Page ID
    129514
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    ARCore. (2018) In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/ARCore

    Augmented reality. (n.d.) In Wikipedia. Retrieved from: https://en.wikipedia.org/wiki/Augmented_reality

    Azuma, R. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), pp.355-385.

    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. and MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), pp.34-47.

    Bichlmeier, C., Wimmer, F., Heining, S. M., & Navab, N. (2007). Contextual Anatomic Mimesis Hybrid In-Situ Visualization Method for Improving Multi-Sensory Depth Perception in Medical Augmented Reality. 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. doi:10.1109/ismar.2007.4538837

    Billinghurst, M., Clark, A., and Lee, G. (2015). A Survey of Augmented Reality. Foundations and Trends® in Human-Computer Interaction, 8(2-3), pp.73-272.

    Blum, T., Stauder, R., Euler, E., & Navab, N. (2012, November). Superman-like X-ray vision: Towards brain-computer interfaces for medical augmented reality. InMixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium on(pp. 271-272). IEEE.

    Bogue, R. (2010). Brain-computer interfaces: control by thought. Industrial Robot: An International Journal, 37(2), 126-132.

    Bryan, M., Green, J., Chung, M., Chang, L., Scherer, R., Smith, J. and Rao, R. (2011). An adaptive brain-computer interface for humanoid robot control. 2011 11th IEEE-RAS International Conference on Humanoid Robots.

    Chayer, C. and Freedman, M. (2001). Frontal lobe functions. Current Neurology and Neuroscience Reports, 1(6), pp.547-552.

    Fatourechi, M., Bashashati, A., Ward, R. K., & Birch, G. E. (2007). EMG and EOG artifacts in brain-computer interface systems: A survey. Clinical Neurophysiology, 118(3), 480-494.

    Google/Google Developers/ ARCore. (2018). Retrieved from: https://developers.google.com/ar/discover/

    Hatsopoulos, N. G., & Donoghue, J. P. (2009). The science of neural interface systems. Annual review of neuroscience, 32, 249.

    Hill, J., Brunner, P., & Vaughan, T. (2011). Interface design challenge for brain-computer interaction. InFoundations of Augmented Cognition. Directing the Future of Adaptive Systems(pp. 500-506). Springer Berlin Heidelberg.

    Hoffmann, U., Vesin, J. M., Ebrahimi, T., &Diserens, K. (2008). An efficient P300-based brain-computer interface for disabled subjects.Journal of neuroscience methods,167(1), 115- 125.

    Iturrate, I., Antelis, J., Kubler, A. and Minguez, J. (2009). A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Transactions on Robotics, 25(3), pp.614-627.

    Kansaku, K. (2011). Brain–machine interfaces for persons with disabilities. In Systems Neuroscience and Rehabilitation(pp. 19-33). Springer Japan.

    Kansaku, K., Hata, N., & Takano, K. (2010). My thoughts through a robots eyes: An augmented reality-brain–machine interface. Neuroscience Research, 66(2), 219-222. doi:10.1016/j.neures.2009.10.006

    Keonn Technologies - Interactive retail systems. (n.d.). Retrieved from https://www.keonn.com/systems/view-all-3.html

    Kerous, B., & Liarokapis, F. (2017). BrainChat - A Collaborative Augmented Reality Brain Interface for Message Communication. 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). doi:10.1109/ismar-adjunct.2017.91

    Krevelen,V, Rick & Poelman, Ronald. (2010). A Survey of Augmented Reality Technologies, Applications and Limitations. International Journal of Virtual Reality (ISSN 1081-1451). 9. 1.

    Lalor, E., Kelly, S., Finucane, C., Burke, R., Smith, R., Reilly, R. and McDarby, G. (2005). Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment.

    Lebedev, M. A., &Nicolelis, M. A. (2006). Brain–machine interfaces: past, present and future. TRENDS in Neurosciences, 29(9), 536-546.

    Levine, S. P., Huggins, J. E., BeMent, S. L., Kushwaha, R. K., Schuh, L. A., Passaro, E. A., … & Ross, D. A. (1999). Identification of electrocorticogram patterns as the basis for a direct brain interface. Journal of clinical neurophysiology, 16(5), 439.

    Microsoft HoloLens. (2018). Microsoft. Retrieved from https://www.microsoft.com/en-us/hololens/why-hololens

    Müller-Putz, G., Scherer, R., & Pfurtscheller, G. (2007). Game-like training to learn single s witch operated neuroprosthetic control. In BRAINPLAY 07 Brain-Computer Interfaces and Games Workshop at ACE (Advances in Computer Entertainment) 2007 (p. 41).

    Navarro, K. F. (2004). Wearable, wireless brain computer interfaces in augmented reality environments. In Proceedings of the IEEE International Conference on Information Technology: Coding and Computing, volume 2, pages 643–647.

    Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., …&Beverina, F. (2006). P300-based brain computer interface: reliability and performance in healthy and paralysed users.Clinical neurophysiology,117(3), 531-537.

    Regenbrecht, H., Hoermann, S., Ott, C., Muller, L. and Franz, E. (2014). Manipulating the Experience of Reality for Rehabilitation Applications. Proceedings of the IEEE, 102(2), pp.170-184.

    Sellers, E. W., & Donchin, E. (2006). A P300-based brain–computer interface: initial tests by ALS patients.Clinical neurophysiology,117(3), 538-548.

    Scherer, R., Chung, M., Lyon, J., Cheung, W., & Rao, R. P. (2010, October). Interaction With Virtual And Augmented Reality Environments Using Non-Invasive Brain-Computer Interfacing. In1st International Conference on Applied Bionics and Biomechanics.

    Takano, K., Hata, N., & Kansaku, K. (2011). Towards intelligent environments: an augmented reality–brain–machine interface operated with a see-through head-mount display. Frontiers in neuroscience, 5.

    Treder, M. S., &Blankertz, B. (2010). Research (C) overt attention and visual speller design in an ERP-based brain-computer interface.Behav. Brain Funct,6, 1-13.

    Wagner, D., Pintaric, T., Ledermann, F., & Schmalstieg, D. (2005). Towards Massively Multi-user Augmented Reality on Handheld Devices. Pervasive Computing, 208–219. doi:10.1007/11428572\_13


    This page titled 4.10: References is shared under a not declared license and was authored, remixed, and/or curated by Matthew J. C. Crump via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.