Skip to main content
Social Sci LibreTexts

12.2: First Africa, Then the World

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    What enabled modern Homo sapiens to expand its range further in 300,000 years than Homo erectus did in 1.5 million years? The key is the set of derived biological traits from the last section. The gracile frame and neurological anatomy allowed modern humans to survive and even flourish in the vastly different environments they encountered. Based on multiple types of evidence, the source of all of these modern humans was Africa. Instead of originating from just one location, evidence shows that modern Homo sapiens evolution occurred in a complex gene flow network across Africa, a concept called African multiregionalism (Scerri et al. 2018).

    This section traces the origin of modern Homo sapiens and the massive expansion of our species across all of the continents (except Antarctica) by 12,000 years ago. While modern Homo sapiens first shared geography with archaic humans, modern humans eventually spread into lands where no human had gone before. Figure 12.5 shows the broad routes that our species took expanding around the world. I encourage you to make your own timeline with the dates in this part to see the overall trends.

    315 to 195 KYA. Northern to eastern coasts of Africa are shaded.
    195-100 KYA. Africa, southern Europe and Asia are shaded
    99 to 30 KYA. Africa, Indonesia, Australia, and southern portions of Europe and Asia are shaded.
    29 to 9 KYA. Shading covers most land except Antarctica, Greenland, and some islands.
    Figure 12.5a-d: Four maps depicting the estimated range of modern Homo sapiens through time. The shaded area is based on geographical connections across known sites. Note the growth in the area starting in Africa and the oftentimes-coastal routes that populations followed. Credit: Four maps depicting the estimated range of modern Homo sapiens through time original to Explorations: An Open Invitation to Biological Anthropology by Elyssa Ebding at GeoPlace, California State University, Chico is under a CC BY-NC 4.0 License.

    Modern Homo sapiensBiology and Culture in Africa

    We start with the ample fossil evidence supporting the theory that modern humans originated in Africa during the Middle Pleistocene, having evolved from African archaic Homo sapiens. The earliest dated fossils considered to be modern actually have a mosaic of archaic and modern traits, showing the complex changes from one type to the other. Experts have various names for these transitional fossils, such as Early Modern Homo sapiens or Early Anatomically Modern Humans. However they are labeled, the presence of some modern traits means that they illustrate the origin of the modern type. Three particularly informative sites with fossils of the earliest modern Homo sapiens are Jebel Irhoud, Omo, and Herto.

    3D image of a human cranium with pronounced brow ridges.
    Figure 12.6: Composite rendering of the Jebel Irhoud hominin based on micro-CT scans of multiple fossils from the site. The facial structure is within the modern human range, while the braincase is between the archaic and modern shapes. Credit: A composite reconstruction of the earliest known Homo sapiens fossils from Jebel Irhoud (Morocco) based on micro computed tomographic scans by Philipp Gunz, MPI EVA Leipzig, is under a CC BY-SA 2.0 License.

    Recall from the start of the chapter that the most recent finds at Jebel Irhoud are now the oldest dated fossils that exhibit some facial traits of modern Homo sapiens. Besides Irhoud 10, the cranium that was dated to 315,000 years ago (Hublin et al. 2017; Richter et al. 2017), there were other fossils found in the same deposit that we now know are from the same time period. In total there are at least five individuals, representing life stages from childhood to adulthood. These fossils form an image of high variation in skeletal traits. For example, the skull named Irhoud 1 has a primitive brow ridge, while Irhoud 2 and Irhoud 10 do not (Figure 12.6). The braincases are lower than what is seen in the modern humans of today but higher than in archaic Homo sapiens. The teeth also have a mix of archaic and modern traits that defy clear categorization into either group.

    Research separated by nearly four decades uncovered fossils and artifacts from the Kibish Formation in the Lower Omo Valley in Ethiopia. These Omo Kibish hominins were represented by braincases and fragmented postcranial bones of three individuals found kilometers apart, dating back to around 233,000 years ago (Day 1969; McDougall, Brown, and Fleagle 2005; Vidal et al. 2022). One interesting finding was the variation in braincase size between the two more-complete specimens: while the individual named Omo I had a more globular dome, Omo II had an archaic-style long and low cranium.

    Also in Ethiopia, a team led by Tim White (2003) excavated numerous fossils at Herto. There were fossilized crania of two adults and a child, along with fragments of more individuals. The dates ranged between 160,000 and 154,000 years ago. The skeletal traits and stone-tool assemblage were both intermediate between the archaic and modern types. Features reminiscent of modern humans included a tall braincase and thinner zygomatic (cheek) bones than those of archaic humans (Figure 12.7). Still, some archaic traits persisted in the Herto fossils, such as the supraorbital tori. Statistical analysis by other research teams concluded that at least some cranial measurements fit just within the modern human range (McCarthy and Lucas 2014), favoring categorization with our own species.

    Replica cranium showing wide brow ridges and gracile face.
    Figure 12.7: This model of the Herto cranium showing its mosaic of archaic and modern traits. Credit: Homo sapiens idaltu BOU-VP-16/1 Herto Cranium by ©BoneClones is used by permission and available here under a CC BY-NC 4.0 License.

    The timeline of material culture suggests a long period of relying on similar tools before a noticeable diversification of artifacts types. Researchers label the time of stable technology shared with archaic types the Middle Stone Age, while the subsequent time of diversification in material culture is called the Later Stone Age.

    In the Middle Stone Age, the sites of Jebel Irhoud, Omo, and Herto all bore tools of the same flaked style as archaic assemblages, even though they were separated by almost 150,000 years. The consistency in technology may be evidence that behavioral modernity was not so developed. No clear signs of art dating back this far have been found either. Other hypotheses not related to behavioral modernity could explain these observations. The tool set may have been suitable for thriving in Africa without further innovation. Maybe works of art from that time were made with media that deteriorated or perhaps such art was removed by later humans.

    Evidence of what Homo sapiens did in Africa from the end of the Middle Stone Age to the Later Stone Age is concentrated in South African cave sites that reveal the complexity of human behavior at the time. For example, Blombos Cave, located along the present shore of the Cape of Africa facing the Indian Ocean, is notable for having a wide variety of artifacts. The material culture shows that toolmaking and artistry were more complex than previously thought for the Middle Stone Age. In a layer dated to 100,000 years ago, researchers found two intact ochre-processing kits made of abalone shells and grinding stones (Henshilwood et al. 2011). Marine snail shell beads from 75,000 years ago were also excavated (Figure 12.8; d’Errico et al. 2005). Together, the evidence shows that the Middle Stone Age occupation at Blombos Cave incorporated resources from a variety of local environments into their culture, from caves (ochre), open land (animal bones and fat), and the sea (abalone and snail shells). This complexity shows a deep knowledge of the region’s resources and their use—not just for survival but also for symbolic purposes.

    Multiple views of shells with holes bored through them.
    Figure 12.8: Examples of the perforated shell beads found in Blombos Cave, South Africa: (a) view of carved hole seen from the inside; (b) arrows indicate worn surfaces due to repetitive contact with other objects, such as with other beads or a connecting string; (c) traces of ochre; and (d) four shell beads showing a consistent pattern of perforation. Credit: BBC-shell-beads by Chenshilwood (Chris Henshilbood and Francesco d’Errico) at English Wikipedia is under a CC BY-SA 3.0 License.

    On the eastern coast of South Africa, Border Cave shows new African cultural developments at the start of the Later Stone Age. Paola Villa and colleagues (2012) identified several changes in technology around 43,000 years ago. Stone-tool production transitioned from a slower process to one that was faster and made many microliths, small and precise stone tools. Changes in decorations were also found across the Later Stone Age transition. Beads were made from a new resource: fragments of ostrich eggs shaped into circular forms resembling present-day breakfast cereal O’s (d’Errico et al. 2012). These beads show a higher level of altering one’s own surroundings and a move from the natural to the abstract in terms of design.

    Summary of Modern H. sapiens in Africa

    The combined fossil evidence paints a picture of diversity in geography and traits. Instead of evolving in just East Africa, the Jebel Irhoud find revealed that early modern Homo sapiens had a wide range across Middle Pleistocene Africa. Supporting this explanation, fossils have different mosaics of archaic and modern traits in different places and even within the same area. The high level of diversity from just these fossils shows that the modern traits took separate paths toward the set we have today. The connections were convoluted, involving fluctuating gene flow among small groups of regional nomadic foragers across a large continent over a long time.

    African culture experienced a long constant phase called the Middle Stone Age until a faster burst of change produced innovation and new styles. The change was not one moment but rather an escalation in development. Later Stone Age culture introduced elements seen across many regions, including the construction of composite tools and even the use of strung decorations such as beads. These developments appear in the Later Stone Age of other regions, such as Europe. Based on the early date of the African artifacts, Later Stone Age culture may have originated in Africa and passed from person to person and region to region, with people adapting the general technique to their local resources and viewing the meaning in their own way.

    Expansion into the Middle East and Asia

    While modern Homo sapiens lived across Africa, some members eventually left the continent. These pioneers could have used two connections to the Middle East or West Asia. From North Africa, they could have crossed the Sinai Peninsula and moved north to the Levant, or eastern Mediterranean. Finds in that region show an early modern human presence. Other finds support the Southern Dispersal model, with a crossing from East Africa to the southern Arabian Peninsula through the Straits of Bab-el-Mandeb. It is tempting to think of one momentous event in which people stepped off Africa and into the Middle East, never to look back. In reality, there were likely multiple waves of movement producing gene flow back and forth across these regions as the overall range pushed east. The expanding modern human population could have thrived by using resources along the southern coast of the Arabian Peninsula to South Asia, with side routes moving north along rivers. The maximum range of the species then grew across Asia.

    Modern Homo sapiens in the Middle East

    Geographically, the Middle East is the ideal place for the African modern Homo sapiens population to inhabit upon expanding out of their home continent. In the Eastern Mediterranean coast of the Levant, there is a wealth of skeletal and material culture linked to modern Homo sapiens. Recent discoveries from Saudi Arabia further add to our view of human life just beyond Africa.

    The Caves of Mount Carmel in present-day Israel have preserved skeletal remains and artifacts of modern Homo sapiens, the first-known group living outside Africa. The skeletal presence at Misliya Cave is represented by just part of the left upper jaw of one individual, but it is notable for being dated to a very early time, between 194,000 and 177,000 years ago (Hershkovitz et al. 2018). Later, from 120,000 to 90,000 years ago, fossils of multiple individuals across life stages were found in the caves of Es-Skhul and Qafzeh (Shea and Bar-Yosef 2005). The skeletons had many modern Homo sapiens traits, such as globular crania and more gracile postcranial bones when compared to Neanderthals. Still, there were some archaic traits. For example, the adult male Skhul V also possessed what researchers Daniel Lieberman, Osbjorn Pearson, and Kenneth Mowbray (2000) called marked or clear occipital bunning. Also, compared to later modern humans, the Mount Carmel people were more robust. Skhul V had a particularly impressive brow ridge that was short in height but sharply jutted forward above the eyes (Figure 12.9). The high level of preservation is due to the intentional burial of some of these people. Besides skeletal material, there are signs of artistic or symbolic behavior. For example, the adult male Skhul V had a boar’s jaw on his chest. Similarly, Qafzeh 11, a juvenile with healed cranial trauma, had an impressive deer antler rack placed over his torso (Figure 12.10; Coqueugniot et al. 2014). Perforated seashells colored with ochre, mineral-based pigment, were also found in Qafzeh (Bar-Yosef Mayer, Vandermeersch, and Bar-Yosef 2009).

    Side view of a skull replica with a globular braincase.
    Figure 12.9: This Skhul V cranium model shows the sharp browridges. The contour of a marked occipital bun is barely visible from this angle. Credit: Homo sapiens Skull Skhul 5 by ©BoneClones is used by permission and available here under a CC BY-NC 4.0 License.
    Human skeleton in a stony matrix. Ribs are visible below the antlers.
    Figure 12.10 This cast of the Qafzeh 11 burial shows the antler’s placement over the upper torso. The forearm bones appear to overlap the antler. Credit: Moulage de la sépulture de l’individu “Qafzeh 11” (avec ramure de cervidé), homme de Néandertal (Collections du Muséum national d’histoire naturelle de Paris, France) by Eunostos has been modified (cropped and color modified) and is under a CC BY-SA 4.0 License.

    One remaining question is, what happened to the modern humans of the Levant after 90,000 years ago? Another site attributed to our species did not appear in the region until 47,000 years ago. Competition with Neanderthals may have accounted for the disappearance of modern human occupation since the Neanderthal presence in the Levant lasted longer than the dates of the early modern Homo sapiens. John Shea and Ofer Bar-Yosef (2005) hypothesized that the Mount Carmel modern humans were an initial expansion from Africa that failed. Perhaps they could not succeed due to competition with the Neanderthals who had been there longer and had both cultural and biological adaptations to that environment.

    Modern Homo sapiens of China

    A long history of paleoanthropology in China has found ample evidence of modern human presence. Four notable sites are the caves at Fuyan, Liujiang, Tianyuan, and Zhoukoudian. In the distant past, these caves would have been at least seasonal shelters that unintentionally preserved evidence of human presence for modern researchers to discover.

    At Fuyan Cave in Southern China, paleoanthropologists found 47 adult teeth associated with cave formations dated to between 120,000 and 80,000 years ago (Liu et al. 2015). It is currently the oldest-known modern human site in China, though other researchers question the validity of the date range (Michel et al. 2016). The teeth have the small size and gracile features of modern Homo sapiens dentition.

    The fossil Liujiang (or Liukiang) hominin (67,000 years ago) has derived traits that classified it as a modern Homo sapiens, though primitive archaic traits were also present. In the skull, which was found nearly complete, the Liujiang hominin had a taller forehead than archaic Homo sapiens but also had an enlarged occipital region (Figure 12.11; Brown 1999; Wu et al. 2008). Other parts of the skeleton also had a mix of modern and archaic traits: for example, the femur fragments suggested a slender length but with thick bone walls (Woo 1959).

    A human skull with very slight brow ridges and an extremely globular braincase.
    Figure 12.11: The Liujiang cranium shows the tall forehead and overall gracile appearance typical of modern Homo sapiens. Credit: Liujiang cave skull-a. Homo Sapiens 68,000 Years Old (Taken at the David H. Koch Hall of Human Origins, Smithsonian Natural History Museum) by Ryan Somma has been modified (color modified) and is under a CC BY-SA 2.0 License.

    Another Chinese site to describe here is the one that has been studied the longest. In the Zhoukoudian Cave system (Figure 12.12), where Homo erectus and archaic Homo sapiens have also been found, there were three crania of modern Homo sapiens. These crania, which date to between 34,000 and 10,000 years ago, were all more globular than those of archaic humans but still lower and longer than those of later modern humans (Brown 1999; Harvati 2009). When compared to one another, the crania showed significant differences from one another. Comparison of cranial measurements to other populations past and present found no connection with modern East Asians, again showing that human variation was very different from what we see today.

    A cave opening amongst a dry wooded region.
    Figure 12.12: The entrance to the Upper Cave of the Zhoukoudian complex, where crania of three ancient modern humans were found. Credit: Zhoukoudian Upper Cave by Mutt is under a CC BY-SA 4.0 License.

    Summary of Modern H. sapiens in the Middle East and Asia

    As in Africa, the finds of the Middle East have shown that humans were biologically diverse and had complex relationships with their environment. Work in the Levant showed an initial expansion north from the Sinai Peninsula that did not last. Away from the Levant, expansion continued. Local resources were used to make lithics and decorative items.

    The early Asian presence of modern Homo sapiens was complex and varied as befitting the massive continent. What the evidence shows is that people adapted to a wide array of environments that were far removed from Africa. From the Levant to China, humans with modern anatomy used caves that preserved signs of their presence. Faunal and floral remains found in these shelters speak to the flexibility of the human omnivorous diet as local wildlife and foliage became nourishment. Decorative items, often found as burial goods in planned graves, show a flourishing cultural life.

    Eventually, modern humans at the southeastern fringe of the geographical range of the species found their way southeast until some became the first humans in Australia.

    Crossing to Australia

    Expansion of the first modern human Asians, still following the coast, eventually entered an area that researchers call Sunda before continuing on to modern Australia. Sunda was a landmass made up of the modern-day Malay Peninsula, Sumatra, Java, and Borneo. Lowered sea levels connected these places with land bridges, making them easier to traverse. Proceeding past Sunda meant navigating Wallacea, the archipelago that includes the Indonesian islands east of Borneo. In the distant past, there were many megafauna, large animals that migrating humans would have used for food and materials (such as utilizing animals’ hides and bones). Further southeast was another landmass called Sahul, which included New Guinea and Australia as one contiguous continent. Based on fossil evidence, this land had never seen hominins or any other primates before modern Homo sapiens arrived. Sites along this path offer clues about how our species handled the new environment to live successfully as foragers.

    A cranium showing a diagonal sloping forehead.
    Figure 12.13: Replica of the Kow Swamp 1 cranium. The shape of the braincase could be due to artificial cranial modification. A competing hypothesis is that it reflects the primitive shape of Homo erectus. Credit: Kow Swamp1-Homo sapiens by Ryan Somma from Occoquan, USA, under a CC BY-SA 2.0 License has been modified (background cleaned and color modified) and is available here under a CC BY-NC 4.0 License.

    The skeletal remains at Lake Mungo, land traditionally owned by Mutthi Mutthi, Ngiampaa, and Paakantji peoples, are the oldest known in the continent. The now-dry lake was one of a series located along the southern coast of Australia in New South Wales, far from where the first people entered from the north (Barbetti and Allen 1972; Bowler et al. 1970). Two individuals dating to around 40,000 years ago show signs of artistic and symbolic behavior, including intentional burial. The bones of Lake Mungo 1 (LM1), an adult female, were crushed repeatedly, colored with red ochre, and cremated (Bowler et al. 1970). Lake Mungo 3 (LM3), a tall, older male with a gracile cranium but robust postcranial bones, had his fingers interlocked over his pelvic region (Brown 2000).

    Kow Swamp, within traditional Yorta Yorta land also in southern Australia, contained human crania that looked distinctly different from the ones at Lake Mungo (Durband 2014; Thorne and Macumber 1972). The crania, dated between 9,000 and 20,000 years ago, had extremely robust brow ridges and thick bone walls, but these were paired with globular features on the braincase (Figure 12.13).

    While no fossil humans have been found at the Madjedbebe rock shelter in the North Territory of Australia, more than 10,000 artifacts found there show both behavioral modernity and variability (Clarkson et al. 2017). They include a diverse array of stone tools and different shades of ochre for rock art, including mica-based reflective pigment (similar to glitter). These impressive artifacts are as far back as 56,000 years old, providing the date for the earliest-known presence of humans in Australia.

    Summary of Modern H. sapiens in Australia

    The overall view of the first modern humans in Australia from a biological perspective shows a high amount of skeletal diversity. This is similar to the trends seen earlier in Africa, the Middle East, and East Asia. The earliest-known arrivals brought with them a multifaceted suite of cultural practices as seen in their material culture.

    From the Levant to Europe

    The first modern human expansion into Europe occurred after other members of our species settled East Asia and Australia. As the evidence from the Levant suggests, modern human movement to Europe may have been hampered by the presence of Neanderthals. Another obstacle was that the colder climate was incompatible with the biology of African modern Homo sapiens, which was adapted for exposure to high temperature and ultraviolet radiation. Still, by 40,000 years ago, modern Homo sapiens had a detectable presence. This time was also the start of the Later Stone Age or Upper Paleolithic, when there was an expansion in cultural complexity. There is a wealth of evidence from this region due to a Western bias in research, the proximity of these findings to Western scientific institutions, and the desire of Western scientists to explore their own past. This section will cover key evidence of early modern human life in Europe, and the typologies used to view cultural changes in this region.

    Robust cranium with a gradually sloping forehead.
    Figure 12.14: This side view of the Oase 2 cranium shows the reduced brow ridges but also occipital bunning that is a sign that modern Homo sapiens interbred with Neanderthals. Credit: Oase 2 by James Di Loreto & Donald H. Hurlbert, Smithsonian [exhibit: Human Evolution Evidence, Human Fossils] has been modified (sharpened) and is used for educational and non-commercial purposes as outlined by the Smithsonian.

    In Romania, the site of Peștera cu Oase (Cave of Bones) had the oldest-known remains of modern Homo sapiens in Europe, dated to around 40,000 years ago (Trinkaus et al. 2003a). Among the bones and teeth of many animals were the fragmented cranium of one person and the mandible of another (the two bones did not fit each other). Both bones have modern human traits similar to the fossils from the Middle East, but they also had Neanderthal traits. Oase 1, the mandible, had a mental eminence but also extremely large molars (Trinkaus et al. 2003b). This mandible has yielded DNA that surprisingly is equally similar to DNA from present-day Europeans and Asians (Fu et al. 2015). This means that Oase 1 was not the direct ancestor of modern Europeans. The Oase 2 cranium has the derived traits of reduced brow ridges along with archaic wide zygomatic cheekbones and an occipital bun (Figure 12.14; Rougier et al. 2007).

    Dating to around 26,000 years ago, Předmostí near Přerov in the Czech Republic was a site where people buried over 30 individuals along with many artifacts. Eighteen individuals were found in one mass burial area, a few covered by the scapulae of woolly mammoths (Germonpré, Lázničková-Galetová, and Sablin 2012). The Předmostí crania were more globular than those of archaic humans but tended to be longer and lower than in later modern humans (Figure 12.15; Velemínská et al. 2008). The height of the face was in line with modern residents of Central Europe. There was also skeletal evidence of dog domestication, such as the presence of dog skulls with shorter snouts than in wild wolves (Germonpré, Lázničková-Galetová, and Sablin et al. 2012). In total, Předmostí could have been a settlement dependent on mammoths for subsistence and the artificial selection of early domesticated dogs.

    Black-and-white photograph of a human skull with labeled cranial landmarks.
    Figure 12.15: This illustration is based upon one of the surviving photographic negatives since the original fossil was lost in World War II. The modern human chin is prominent, as is an archaic occipital bun. Credit: Předmostí 9 by J. Matiegka (1862–1941) has been modified (sharpened) and is in the public domain.

    The sequence of modern Homo sapiens technological change in the Later Stone Age has been thoroughly dated and labeled by researchers working in Europe. Among them, the Gravettian tradition of 33,000 years to 21,000 years ago is associated with most of the known curvy female figurines, often assumed to be “Venus” figures. Hunting technology also advanced in this time with the first known boomerang, atlatl (spear thrower), and archery. The Magdalenian tradition spread from 17,000 to 12,000 years ago. This culture further expanded on fine bone tool work, including barbed spearheads and fishhooks (Figure 12.16).

    Long, thin spear tips. Many have barbs, others are smooth.
    Figure 12.16: This drawing from 1891 shows an array of Magdalenian-style barbed points found in the burial of a reindeer hunter. They were carved from antler. Credit: La station quaternaire de Raymonden (…)Hardy Michel bpt6k5567846s (2) by M. Féauxis, original by Michel Hardy (1891), is in the public domain.

    Among the many European sites dating to the Later Stone Age, the famous cave art sites deserve mention. Chauvet-Pont-d’Arc Cave in southern France dates to separate Aurignacian occupations 31,000 years ago and 26,000 years ago. Over a hundred art pieces representing 13 animal species are preserved, from commonly depicted deer and horses to rarer rhinos and owls. Another French cave with art is Lascaux, which is several thousand years younger at 17,000 years ago in the Magdalenian period. At this site, there are over 6,000 painted figures on the walls and ceiling (Figure 12.17). Scaffolding and lighting must have been used to make the paintings on the walls and ceiling deep in the cave. Overall, visiting Lascaux as a contemporary must have been an awesome experience: trekking deeper in the cave lit only by torches giving glimpses of animals all around as mysterious sounds echoed through the galleries.

    Charcoal painting of a bull seen from the side.
    Figure 12.17: Photograph of just one surface with cave art at Lascaux Cave. The most prominent piece here is the Second Bull, found in a chamber called the Hall of Bulls. Smaller cattle and horses are also visible. Credit: Lascaux cave (document 108435) Prehitoric Sites and Decorated Caves of the Vézère Valley (France) by Francesco Bandarin, © UNESCO, has been modified (color modified) and is under a CC BY-SA 3.0 License.

    Summary of Modern H. sapiens in Europe

    Study of Europe in the Upper Paleolithic gives a more detailed view of the general pattern of biological and cultural change linked with the arrival of modern Homo sapiens. The modern humans experienced a rapidly changing culture that went through waves of complexity and refinement. Skeletally, the increasing globularity of the cranium and the gracility of the rest of the skeleton continued, though with unique regional traits, too. The cave art sites showed a deeper exploration of creativity though the exact meaning is unclear. With survival dependent on the surrounding ecology, painting the figures may have connected people to important and impressive wildlife at both a physical and spiritual level. Both reverence for animals and the use of caves for an enhanced sensory experience are common to cultures past and present.

    Peopling of the Americas

    By 25,000 years ago, our species was the only member of Homo left on Earth. Gone were the Neanderthals, Denisovans, Homo naledi, and Homo floresiensis. The range of modern Homo sapiens kept expanding eastward into—using the name given to this area by Europeans much later—the Western Hemisphere. This section will address what we know about the peopling of the Americas, from the first entry to these continents to the rapid spread of Indigenous Americans across its varied environments.

    While evidence points to an ancient land bridge called Beringia that allowed people to cross from what is now northeastern Siberia into modern-day Alaska, what people did to cross this land bridge is still being investigated. For most of the 20th century, the accepted theory was the Ice-Free Corridor model. It stated that northeast Asians (East Asians and Siberians) first expanded across Beringia inland through a passage between glaciers that opened into the western Great Plains of the United States, just east of the Rocky Mountains, around 13,000 years ago (Swisher et al. 2013). While life up north in the cold environment would have been harsh, migrating birds and an emerging forest might have provided sustenance as generations expanded through this land (Potter et al. 2018).

    However, in recent decades, researchers have accumulated evidence against the Ice-Free Corridor model. Archaeologist K. R. Fladmark (1979) brought the alternate Coastal Route model into the archaeological spotlight; researcher Jon M. Erlandson has been at the forefront of compiling support for this theory (Erlandson et al. 2015). The new focus is the southern edge of the land bridge instead of its center: About 16,000 years ago, members of our species expanded along the coastline from northeast Asia, east through Beringia, and south down the Pacific Coast of North America while the inland was still sealed off by ice. The coast would have been free of ice at least part of the year, and many resources would have been found there, such as fish (e.g., salmon), mammals (e.g., whales, seals, and otters), and plants (e.g., seaweed).

    South through the Americas

    When the first modern Homo sapiens reached the Western Hemisphere, the spread through the Americas was rapid. Multiple migration waves crossed from North to South America (Posth et al. 2018). Our species took advantage of the lack of hominin competition and the bountiful resources both along the coasts and inland. The Americas had their own wide array of megafauna, which included woolly mammoths (Figure 12.18), mastodons, camels, horses, ground sloths, giant tortoises, and—a favorite of researchers—a two-meter-tall beaver. The reason we cannot see these amazing animals today may be that resources gained from these fauna were crucial to the survival for people over 12,000 years ago (Araujo et al. 2017). Several sites are notable for what they add to our understanding of the distant past in the Americas, including interactions with megafauna and other elements of the environment.

    A mammoth model with long curving tusks.
    Figure 12.18: Life-size reconstruction of a woolly mammoth at the Page Museum, part of the La Brea Tar Pits complex in Los Angeles, California. Outside of Africa, megafauna such as this went extinct around the time that humans entered their range. Credit: Woolly Mammoth (at La Brea Tar Pits & Museum) by Keith Chan is under a CC BY-NC 4.0 License.

    A 2019 discovery may allow researchers to improve theories about the peopling of the Americas. In White Sands National Park, New Mexico, 60 human footprints have been astonishingly dated to around 22,000 years ago (Bennett et al. 2021). This date and location do not match either the Ice-Free Corridor or Coastal Route models. Researchers are now working to verify the find and adjust previous models to account for the new evidence. This groundbreaking find is sparking new theories; it is another example of the fast pace of research performed on our past.

    Monte Verde is a landmark site that shows that the human population had expanded down the whole vertical stretch of the Americas to Chile by 14,600 years ago, only a few thousand years after humans first entered the Western Hemisphere from Alaska. The site has been excavated by archaeologist Tom D. Dillehay and his team (2015). The remains of nine distinct edible species of seaweed at the site shows familiarity with coastal resources and relates to the Coastal Route model by showing a connection between the inland people and the sea.

    A long stone point with small chips around the edge.
    Figure 12.19: The Clovis point has a distinctive structure. It has a wide tip, and its base has two small projections. This example was carved from chert and found in north-central Ohio, dated to around 11,000 years ago. Credit: Clovis Point (15.2012.25) by the Smithsonian [Department of Anthropology; Cooper Hewitt, Smithsonian Design Museum] is used for educational and non-commercial purposes as outlined by the Smithsonian.

    Named after the town in New Mexico, the Clovis stone-tool style is the first example of a widespread culture across much of North America, between 13,400 and 12,700 years ago (Miller, Holliday, and Bright 2013). Clovis points were fluted with two small projections, one on each end of the base, facing away from the head (Figure 12.19). The stone points found at this site match those found as far as the Canadian border and northern Mexico, and from the west coast to the east coast of the United States. Fourteen Clovis sites also contained the remains of mammoths or mastodons, suggesting that hunting megafauna with these points was an important part of life for the Clovis people. After the spread of the Clovis style, it diversified into several regional styles, keeping some of the Clovis form but also developing their own unique touches.

    Summary of Modern H. sapiens in the Americas

    Research in Native American origins found some surprising details, refining older models. Genetically, the migration can be considered one long period of movement with splits into regional populations. This finding matches the sudden appearance and diversification of the homegrown Clovis culture. A few thousand years after arrival into the hemisphere, people had already covered the Americas from north to south.

    The peopling of the Americas also had a lot of elements in common with the prior spread of humans across Africa, Europe, Asia, and Australia. In all of these expansions, these pioneers explored new lands that tested their ability to adapt, both culturally and biologically. Besides stone-tool technology, the use of ochre as decoration was seen from South Africa to South America. The coasts and rivers were likely avenues in the movement of people, artifacts, and ideas, outlining the land masses while providing access to varied environments. The presence of megafauna aided human success, but this resource was eventually depleted in many parts of the world.

    This page titled 12.2: First Africa, Then the World is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Keith Chan (Society for Anthropology in Community Colleges) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.