Skip to main content
Social Sci LibreTexts

7.8: References

  • Page ID
    236930
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    7.1 Acoustic Cues and Signals

    Fay RR (1988) Comparative psychoacoustics. Hear Res 34:295–305.

    Jamie GA (2017) Signals, cues and the nature of mimicry. Proc Biol Sci 284:20162080.

    Johnson K, Sherman VC, Sherman SG (2011). Acoustic and Auditory Phonetics. John Wiley and Sons.

    McComb K, Moss C, Sayialel S, Baker L (2000) Unusually extensive networks of vocal recognition in African elephants. Anim Behav 49:1103–1109.

    Moss CF, Sinha SR (2003) Neurobiology of echolocation in bats. Curr Opin Neurobiol 13:751–758.

    Nowicki S, Searcy WA (2004) Song Function and the Evolution of Female Preferences: Why Birds Sing, Why Brains Matter. Ann N Y Acad Sci 1016:704–723.

    Sayigh LS, Tyack PL, Wells RS, Solow AR, Scott MD, Irvine AB (1999) Individual recognition in wild bottlenose dolphins: a field test using playback experiments. Anim Behav 57:41–50.

    Seyfarth RM, Cheney D (1990) The assessment by vervet monkeys of their own and another species’ alarm calls. Anim Behav 40:754–764.

    Surlykke A, Ghose K, Moss CF (2009) Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. J Exp Biol 212:1011–1020.

    7.2 How Does Acoustic Information Enter the Brain?

    Baguley D, McFerran D, Hall D (2013) Tinnitus. Lancet 382:1600–1607.

    von Békésy G (1960) Experiments in Hearing. New York:McGraw-Hill.

    Cant NB, Oliver DL (2018) Overview of Auditory Projection Pathways and Intrinsic Microcircuits. In: The mammalian auditory pathways: Synaptic organization and microcircuits (Oliver DL, Cant NB, Fay RR, Popper AN, eds), pp 7–39. Cham: Springer International Publishing.

    Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    de Boer J, Thornton ARD, Krumbholz K (2011) What is the role of the medial olivocochlear system in speech-in-noise processing? J Neurophysiol 107:1301–1312.

    Dhanasingh A, Jolly C (2017) An overview of cochlear implant electrode array designs. Hear Res 356:93–103.

    Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90.

    Fettiplace R (2017) Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 7:1197–1227.

    Fowler SL, Calhoun H, Warner-Czyz AD (2021) Music Perception and Speech-in-Noise Skills of Typical Hearing and Cochlear Implant Listeners. Am J Audiol 30:170–181.

    Fridberger A, Tomo I, Ulfendahl M, Boutet de Monvel J (2006) Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia. PNAS 103:1918–1923.

    Guinan JJ (2011) Physiology of the Medial and Lateral Olivocochlear Systems. In: Auditory and vestibular efferents (Ryugo DK, Fay RR, eds), pp 39–81. New York, NY: Springer New York.

    Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752.

    Knipper M, Mazurek B, Dijk P van, Schulze H (2021) Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. J Assoc Res Otolaryngol 22:609–621.

    Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321.

    Kral A, Sharma A (2011) Developmental Neuroplasticity After Cochlear Implantation. Trends Neurosci 35:111–122.

    Lin FR, Niparko JK, Ferrucci L (2011) Hearing loss prevalence in the United States. Arch Intern Med 171:1851–1852.

    Merzenich MM, Michelson RP, Pettit CR, Schindler RA, Reid M (1973) Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann Otol Rhinol Laryngol 82:486–503.

    Mukerji S, Windsor AM, Lee DJ (2010) Auditory brainstem circuits that mediate the middle ear muscle reflex. Trends Amplif 14:170–191.

    Oldfield SR, Parker SP (1984) Acuity of sound localisation: a topography of auditory space. II. Pinna cues absent. Perception 13:601–617.

    Pang XD, Peake WT (1986). How Do Contractions of the Stapedius Muscle Alter the Acoustic Properties of the Ear? In: Allen J.B., Hall J.L., Hubbard A.E., Neely S.T., Tubis A. (eds) Peripheral Auditory Mechanisms. Lecture Notes in Biomathematics, vol 64. Heidelberg:Springer.

    Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    Rosowski JJ (1991) The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. J Acoust Soc Am 90:124–135.

    Shaw E A C (1974) The external ear. In Keidel and Neff, Handbook of Sensory Physiology vol 1, pp 450-490, New York:Springer-Verlag.

    Wagner EL, Shin J-B (2019) Mechanisms of Hair Cell Damage and Repair. Trends Neurosci 42:414–424.

    Wever EG, Lawrence KR (1948) The Middle Ear in Sound Conduction. Arch Otolaryng 48:19–35.

    Winer JA, Diehl JJ, Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. J Comp Neurol 430:27–55.

    Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400:147–174.

    Zeng F-G (2020) Tinnitus and hyperacusis: Central noise, gain and variance. Curr Opin Physiol 18:123–129.

    Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    7.3 How Does the Brain Process Acoustic Information?

    Bao S, Chang EF, Teng C-L, Heiser MA, Merzenich MM (2013) Emergent categorical representation of natural, complex sounds resulting from the early post-natal sound environment. Neuroscience 248:30–42.

    Bosseler AN, Taulu S, Pihko E, Mäkelä JP, Imada T, Ahonen A, Kuhl PK (2013) Theta brain rhythms index perceptual narrowing in infant speech perception. Front Psychol 4:690.

    Demany L, Semal C (2008) The Role of Memory in Auditory Perception. In: Auditory Perception of Sound Sources (Yost WA, Popper AN, Fay RR, eds), pp 77–113. New York: Springer International Publishing.

    Dreyer A, Delgutte B (2006) Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization. J Neurophysiol 96:2327–2341.

    Holt LL, Lotto AJ (2010) Speech perception as categorization. Atten Percept Psychophys 72:1218–1227.

    Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Johnson K, Sherman VC, Sherman SG (2011). Acoustic and Auditory Phonetics. John Wiley and Sons.

    oris PX, Smith PH, Yin TC (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21:1235–1238.

    Kolarik AJ, Moore BCJ, Zahorik P, Cirstea S, Pardhan S (2016) Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten Percept Psychophys 78:373–395.

    Kuhl PK, Stevens E, Hayashi A, Deguchi T, Kiritani S, Iverson P (2006) Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Dev Sci 9:F13–F21.

    Lesica NA, Lingner A, Grothe B (2010) Population coding of interaural time differences in gerbils and barn owls. J Neurosci 30:11696–11702.

    Liberman AM, Harris KS, Hoffman HS, Griffith BC (1957) The discrimination of speech sounds within and across phoneme boundaries. J Exp Psychol 54:358–368.

    Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21:1–36.

    McAdams S (2019) The Perceptual Representation of Timbre. In: Timbre: Acoustics, perception, and cognition (Siedenburg K, Saitis C, McAdams S, Popper AN, Fay RR, eds), pp 23–57. Cham: Springer International Publishing.

    Nakamoto KT, Jones SJ, Palmer AR (2008) Descending projections from auditory cortex modulate sensitivity in the midbrain to cues for spatial position. J Neurophysiol 99:2347–2356.

    Oldfield SR, Parker SP (1984) Acuity of sound localisation: a topography of auditory space. I. Normal hearing conditions. Perception 13:581–600.

    Piske T, MacKay IR, Flege JE (2001) Factors affecting degree of foreign accent in an L2: A review. J Phon 29:191-215.

    Plack CJ, Oxenham AJ (2005) The Psychophysics of Pitch. In: Pitch: Neural coding and perception (Plack CJ, Fay RR, Oxenham AJ, Popper AN, eds), pp 56–98. New York, NY: Springer New York.

    Scharf B (1978) Loudness. In: Carterette EC, Friedman MP (eds) Handbook of Perception, IV: Hearing. New York: Academic Press, pp. 187–242.

    Schnupp JWH, Honey C, Willmore BDB (2013) Neural Correlates of Auditory Object Perception. In: Neural correlates of auditory cognition (Cohen YE, Popper AN, Fay RR, eds), pp 115–149. New York, NY: Springer New York.

    Tsao F-M, Liu H-M, Kuhl PK (2004) Speech perception in infancy predicts language development in the second year of life: a longitudinal study. Child Dev 75:1067–1084.

    Wang X (2013) The harmonic organization of auditory cortex. Front Syst Neurosci 7:114.

    Werker JF, Tees R (1984) Phonemic and phonetic factors in adult cross-language speech perception. J Acoust Soc Am 75:1866–1878.

    Winter IM (2005) The Neurophysiology of Pitch. In: Pitch: Neural coding and perception (Plack CJ, Fay RR, Oxenham AJ, Popper AN, eds), pp 99–146. New York, NY: Springer New York.

    Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4:1123–1130.

    Zhou X, Merzenich MM (2008) Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. PNAS 105:4423–4428.

    7.4 Balance: A Sense of Where You Are

    Blazquez, P. M., Hirata, Y., & Highstein, S. M. (2004). The vestibulo-ocular reflex as a model system for motor learning: What is the role of the cerebellum? The Cerebellum, 3, 188–192.

    Cohen, B., & Raphan, T. (2004). The physiology of the vestibuloocular reflex (VOR). In S. M. Highstein, R. R. Fay, & A. N. Popper (Eds.), The vestibular system (pp. 235–285). New York, NY: Springer New York.

    Day, B. L., & Fitzpatrick, R. C. (2005). The vestibular system. Current Biology, 15, R583–R586.

    Ito, M. (1998). Cerebellar learning in the vestibuloocular reflex. Trends in Cognitive Sciences, 2, 313–321.

    Rabbitt, R. D., Damiano, E. R., & Grant, J. W. (2004). Biomechanics of the semicircular canals and otolith organs. In S. M. Highstein, R. R. Fay, & A. N. Popper (Eds.), The vestibular system (pp. 153–201). New York, NY: Springer New York.


    This page titled 7.8: References is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?