Skip to main content
Social Sci LibreTexts

12.8: References

  • Page ID
    236985
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    12.1 What Is Stress?

    Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391. doi.org/10.1037/0033-2909.130.3.355

    Jamieson, J. P., Nock, M. K., & Mendes, W. B. (2012). Mind over matter: Reappraising arousal improves cardiovascular and cognitive responses to stress. Journal of Experimental Psychology: General, 141(3), 417–422. doi.org/10.1037/a0025719

    Lazarus, R. S. (1993). From psychological stress to the emotions: A history of changing outlooks. Annual Review of Psychology, 44, 1–21. doi.org/10.1146/annurev.ps.44.020193.000245

    Roelofs, K. (2017). Freeze for action: Neurobiological mechanisms in animal and human freezing. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1718), 20160206. doi.org/10.1098/rstb.2016.0206

    Selye, H. (1974). Stress without distress (1st ed.). Lippincott.

    12.2 Neural Mechanisms and Circuitry of the Stress Response

    Anacker, C., Luna, V. M., Stevens, G. S., Millette, A., Shores, R., Jimenez, J. C., Chen, B., & Hen, R. (2018). Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 559(7712), 98–102. https://doi.org/10.1038/s41586-018-0262-4

    Brischoux, F., Chakraborty, S., Brierley, D. I., & Ungless, M. A. (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4894–4899. doi.org/10.1073/pnas.0811507106

    Cameron, H. A., & Glover, L. R. (2015). Adult neurogenesis: Beyond learning and memory. Annual Review of Psychology, 66, 53–81. doi.org/10.1146/annurev-psych-010814-015006

    Chetty, S., Friedman, A. R., Taravosh-Lahn, K., Kirby, E. D., Mirescu, C., Guo, F., Krupik, D., Nicholas, A., Geraghty, A., Krishnamurthy, A., Tsai, M. K., Covarrubias, D., Wong, A., Francis, D., Sapolsky, R. M., Palmer, T. D., Pleasure, D., & Kaufer, D. (2014). Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Molecular Psychiatry, 19(12), 1275–1283. https://doi.org/10.1038/mp.2013.190

    Cope, E. C., & Gould, E. (2019). Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell, 24(5), 690–705. https://doi.org/10.1016/j.stem.2019.03.023

    Cui, W., Aida, T., Ito, H., Kobayashi, K., Wada, Y., Kato, S., Nakano, T., Zhu, M., Isa, K., Kobayashi, K., Isa, T., Tanaka, K., & Aizawa, H. (2020). Dopaminergic signaling in the nucleus accumbens modulates stress-coping strategies during inescapable stress. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(38), 7241–7254. https://doi.org/10.1523/JNEUROSCI.0444-20.2020

    Donley, M. P., Schulkin, J., & Rosen, J. B. (2005). Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behavioural Brain Research, 164(2), 197–205. https://doi.org/10.1016/j.bbr.2005.06.020

    Finlay, J. M., Zigmond, M. J., & Abercrombie, E. D. (1995). Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: Effects of diazepam. Neuroscience, 64(3), 619–628. https://doi.org/10.1016/0306-4522(94)00331-x

    Füzesi, T., Daviu, N., Wamsteeker Cusulin, J. I., Bonin, R. P., & Bains, J. S. (2016). Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nature Communications, 7, 11937. https://doi.org/10.1038/ncomms11937

    Gilpin, N. W., Herman, M. A., & Roberto, M. (2015). The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biological Psychiatry, 77(10), 859–869. https://doi.org/10.1016/j.biopsych.2014.09.008

    Groeneweg, F. L., Karst, H., de Kloet, E. R., & Joëls, M. (2011). Rapid non-genomic effects of corticosteroids and their role in the central stress response. The Journal of Endocrinology, 209(2), 153–167. doi.org/10.1530/JOE-10-0472

    Guiard, B. P., El Mansari, M., & Blier, P. (2008). Cross-talk between dopaminergic and noradrenergic systems in the rat ventral tegmental area, locus ceruleus, and dorsal hippocampus. Molecular Pharmacology, 74(5), 1463–1475. https://doi.org/10.1124/mol.108.048033

    Haubensak, W., Kunwar, P. S., Cai, H., Ciocchi, S., Wall, N. R., Ponnusamy, R., Biag, J., Dong, H. W., Deisseroth, K., Callaway, E. M., Fanselow, M. S., Lüthi, A., & Anderson, D. J. (2010). Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 468(7321), 270–276. https://doi.org/10.1038/nature09553

    Holly, E. N., & Miczek, K. A. (2016). Ventral tegmental area dopamine revisited: Effects of acute and repeated stress. Psychopharmacology, 233(2), 163–186. https://doi.org/10.1007/s00213-015-4151-3

    Hölzel, B. K., Carmody, J., Evans, K. C., Hoge, E. A., Dusek, J. A., Morgan, L., Pitman, R. K., & Lazar, S. W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 11–17. doi.org/10.1093/scan/nsp034

    Karst, H., Berger, S., Turiault, M., Tronche, F., Schütz, G., & Joëls, M. (2005). Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 19204–19207. doi.org/10.1073/pnas.0507572102

    Kirby, E. D., Muroy, S. E., Sun, W. G., Covarrubias, D., Leong, M. J., Barchas, L. A., & Kaufer, D. (2013). Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife, 2, e00362. https://doi.org/10.7554/eLife.00362

    Kolber, B. J., Roberts, M. S., Howell, M. P., Wozniak, D. F., Sands, M. S., & Muglia, L. J. (2008). Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12004–12009. doi.org/10.1073/pnas.0803216105

    Long, K. L. P., Chao, L. L., Kazama, Y., An, A., Hu, K. Y., Peretz, L., Muller, D. C. Y., Roan, V. D., Misra, R., Toth, C. E., Breton, J. M., Casazza, W., Mostafavi, S., Huber, B. R., Woodward, S. H., Neylan, T. C., & Kaufer, D. (2021). Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Translational Psychiatry, 11(1), 631. https://doi.org/10.1038/s41398-021-01745-5

    Venero, C., & Borrell, J. (1999). Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: A microdialysis study in freely moving rats. The European Journal of Neuroscience, 11(7), 2465–2473. doi.org/10.1046/j.1460-9568.1999.00668.x

    Jo, Y. S., Namboodiri, V. M. K., Stuber, G. D., & Zweifel, L. S. (2020). Persistent activation of central amygdala CRF neurons helps drive the immediate fear extinction deficit. Nature Communications, 11(1), 422. https://doi.org/10.1038/s41467-020-14393-y

    Morey, R. A., Gold, A. L., LaBar, K. S., Beall, S. K., Brown, V. M., Haswell, C. C., Nasser, J. D., Wagner, H. R., McCarthy, G., & Mid-Atlantic MIRECC Workgroup (2012). Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Archives of General Psychiatry, 69(11), 1169–1178. doi.org/10.1001/archgenpsychiatry.2012.50

    Quiroz, C., Orrú, M., Rea, W., Ciudad-Roberts, A., Yepes, G., Britt, J. P., & Ferré, S. (2016). Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(3), 851–859. https://doi.org/10.1523/JNEUROSCI.2850-15.2016

    Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1984). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proceedings of the National Academy of Sciences of the United States of America, 81(19), 6174–6177. doi.org/10.1073/pnas.81.19.6174

    Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., & Cameron, H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476(7361), 458–461. https://doi.org/10.1038/nature10287

    Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317–331. https://doi.org/10.1038/nrn3945

    Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2011). The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 13(1), 22–37. https://doi.org/10.1038/nrn3138

    12.3 Interindividual Variability and Resilience in Response to Stress

    Amat, J., Paul, E., Zarza, C., Watkins, L. R., & Maier, S. F. (2006). Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: Role of the ventral medial prefrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(51), 13264–13272. https://doi.org/10.1523/JNEUROSCI.3630-06.2006

    Amat, J., Baratta, M. V., Paul, E., Bland, S. T., Watkins, L. R., & Maier, S. F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8(3), 365–371. https://doi.org/10.1038/nn1399

    Bangasser, D. A., & Wiersielis, K. R. (2018). Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones (Athens, Greece), 17(1), 5–13. https://doi.org/10.1007/s42000-018-0002-z

    Basso, J. C., McHale, A., Ende, V., Oberlin, D. J., & Suzuki, W. A. (2019). Brief, daily meditation enhances attention, memory, mood, and emotional regulation in non-experienced meditators. Behavioural Brain Research, 356, 208–220. https://doi.org/10.1016/j.bbr.2018.08.023

    Bergman, K., Sarkar, P., Glover, V., & O'Connor, T. G. (2010). Maternal prenatal cortisol and infant cognitive development: Moderation by infant-mother attachment. Biological Psychiatry, 67(11), 1026–1032. https://doi.org/10.1016/j.biopsych.2010.01.002

    Brouwers, E. P., van Baar, A. L., & Pop, V. J. (2001). Maternal anxiety during pregnancy and subsequent infant development. Infant Behavior and Development, 24, 95–106.

    Buescher, J. L., Musselman, L. P., Wilson, C. A., Lang, T., Keleher, M., Baranski, T. J., & Duncan, J. G. (2013). Evidence for transgenerational metabolic programming in Drosophila. Disease Models & Mechanisms, 6(5), 1123–1132. doi.org/10.1242/dmm.011924

    Carr, C. P., Martins, C. M., Stingel, A. M., Lemgruber, V. B., & Juruena, M. F. (2013). The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. The Journal of Nervous and Mental Disease, 201(12), 1007–1020. doi.org/10.1097/NMD.0000000000000049

    Class, Q. A., Lichtenstein, P., Långström, N., & D'Onofrio, B. M. (2011). Timing of prenatal maternal exposure to severe life events and adverse pregnancy outcomes: A population study of 2.6 million pregnancies. Psychosomatic Medicine, 73(3), 234–241. doi.org/10.1097/PSY.0b013e31820a62ce

    Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52(2), 119–129. doi.org/10.1111/j.1469-7610.2010.02314.x

    Davitz, J. R., & Mason, D. J. (1955). Socially facilitated reduction of a fear response in rats. Journal of Comparative and Physiological Psychology, 48(3), 149–151. doi.org/10.1037/h0046411

    Deschamps, S., Woodside, B., & Walker, C. D. (2003). Pups presence eliminates the stress hyporesponsiveness of early lactating females to a psychological stress representing a threat to the pups. Journal of Neuroendocrinology, 15(5), 486–497. doi.org/10.1046/j.1365-2826.2003.01022.x

    Eisenberger, N. I., Taylor, S. E., Gable, S. L., Hilmert, C. J., & Lieberman, M. D. (2007). Neural pathways link social support to attenuated neuroendocrine stress responses. NeuroImage, 35(4), 1601–1612. https://doi.org/10.1016/j.neuroimage.2007.01.038

    Enoch, M. A. (2011). The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology, 214(1), 17–31. https://doi.org/10.1007/s00213-010-1916-6

    Fan, Y., Tang, Y. Y., & Posner, M. I. (2014). Cortisol level modulated by integrative meditation in a dose-dependent fashion. Stress and Health: Journal of the International Society for the Investigation of Stress, 30(1), 65–70. doi.org/10.1002/smi.2497

    Fleischer, A. W., & Frick, K. M. (2023). New perspectives on sex differences in learning and memory. Trends in Endocrinology and Metabolism: TEM, 34(9), 526–538. https://doi.org/10.1016/j.tem.2023.06.003

    Fletcher, J. M. (2010). Adolescent depression and educational attainment: Results using sibling fixed effects. Health Economics, 19(7), 855–871. doi.org/10.1002/hec.1526

    Forkosh, O., Karamihalev, S., Roeh, S., Alon, U., Anpilov, S., Touma, C., Nussbaumer, M., Flachskamm, C., Kaplick, P. M., Shemesh, Y., & Chen, A. (2019). Identity domains capture individual differences from across the behavioral repertoire. Nature Neuroscience, 22(12), 2023–2028. https://doi.org/10.1038/s41593-019-0516-y

    Goel, N., Workman, J. L., Lee, T. T., Innala, L., & Viau, V. (2014). Sex differences in the HPA axis. Comprehensive Physiology, 4(3), 1121–1155. doi.org/10.1002/cphy.c130054

    Hackney, A. C. (2006). Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Review of Endocrinology & Metabolism, 1(6), 783–792. doi.org/10.1586/17446651.1.6.783

    Haykin, H., & Rolls, A. (2021). The neuroimmune response during stress: A physiological perspective. Immunity, 54(9), 1933–1947. https://doi.org/10.1016/j.immuni.2021.08.023

    Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49(12), 1023–1039. https://doi.org/10.1016/s0006-3223(01)01157-x

    House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science (New York, N.Y.), 241(4865), 540–545. doi.org/10.1126/science.3399889

    Iriki, M., & Simon, E. (2012). Differential control of efferent sympathetic activity revisited. The Journal of Physiological Sciences: JPS, 62(4), 275–298. https://doi.org/10.1007/s12576-012-0208-9

    Jamieson, J. P., Nock, M. K., & Mendes, W. B. (2012). Mind over matter: Reappraising arousal improves cardiovascular and cognitive responses to stress. Journal of Experimental Psychology: General, 141(3), 417–422. doi.org/10.1037/a0025719

    Jezova, D., Radikova, Z., & Vigas, M. (2007). Growth hormone response to different consecutive stress stimuli in healthy men: Is there any difference? Stress (Amsterdam, Netherlands), 10(2), 205–211. doi.org/10.1080/10253890701292168

    Kabat-Zinn, J. (2013). Full catastrophe living: Using the wisdom of your body and mind to face stress, pain, and illness (Revised and updated edition). Bantam Books trade paperback.

    Kalisch, R. (2009). The functional neuroanatomy of reappraisal: Time matters. Neuroscience and Biobehavioral Reviews, 33(8), 1215–1226. https://doi.org/10.1016/j.neubiorev.2009.06.003

    Keller, A., Litzelman, K., Wisk, L. E., Maddox, T., Cheng, E. R., Creswell, P. D., & Witt, W. P. (2012). Does the perception that stress affects health matter? The association with health and mortality. Health Psychology: Official Journal of the Division of Health Psychology, American Psychological Association, 31(5), 677–684. doi.org/10.1037/a0026743

    Kim, J. W., Ko, M. J., Gonzales, E. L., Kang, R. J., Kim, D. G., Kim, Y., Seung, H., Oh, H. A., Eun, P. H., & Shin, C. Y. (2018). Social support rescues acute stress-induced cognitive impairments by modulating ERK1/2 phosphorylation in adolescent mice. Scientific Reports, 8(1), 12003. https://doi.org/10.1038/s41598-018-30524-4

    Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T., & Lehner, B. (2017). Transgenerational transmission of environmental information in C. elegans. Science (New York, N.Y.), 356(6335), 320–323. doi.org/10.1126/science.aah6412

    Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P. M., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science (New York, N.Y.), 277(5332), 1659–1662. doi.org/10.1126/science.277.5332.1659

    Measserman, J. H. (1943). Behavior and neurosis. University of Chicago Press.

    Miller, D. B., & O'Callaghan, J. P. (2005). Aging, stress and the hippocampus. Ageing Research Reviews, 4(2), 123–140. https://doi.org/10.1016/j.arr.2005.03.002

    Morris, W. N., Worchel, S., Bios, J. L., Pearson, J. A., Rountree, C. A., Samaha, G. M., Wachtler, J., & Wright, S. L. (1976). Collective coping with stress: Group reactions to fear, anxiety, and ambiguity. Journal of Personality and Social Psychology, 33(6), 674–679. doi.org/10.1037//0022-3514.33.6.674

    Muroy, S. E., Long, K. L., Kaufer, D., & Kirby, E. D. (2016). Moderate stress-induced social bonding and oxytocin signaling are disrupted by predator odor in male rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(8), 2160–2170. https://doi.org/10.1038/npp.2016.16

    Nabi, H., Kivimäki, M., Batty, G. D., Shipley, M. J., Britton, A., Brunner, E. J., Vahtera, J., Lemogne, C., Elbaz, A., & Singh-Manoux, A. (2013). Increased risk of coronary heart disease among individuals reporting adverse impact of stress on their health: The Whitehall II prospective cohort study. European Heart Journal, 34(34), 2697–2705. doi.org/10.1093/eurheartj/eht216

    O'Connor, T. G., Heron, J., Golding, J., Beveridge, M., & Glover, V. (2002). Maternal antenatal anxiety and children's behavioural/emotional problems at 4 years. Report from the Avon Longitudinal Study of Parents and Children. The British Journal of Psychiatry: The Journal of Mental Science, 180, 502–508. https://doi.org/10.1192/bjp.180.6.502

    Perroud, N., Rutembesa, E., Paoloni-Giacobino, A., Mutabaruka, J., Mutesa, L., Stenz, L., Malafosse, A., & Karege, F. (2014). The Tutsi genocide and transgenerational transmission of maternal stress: Epigenetics and biology of the HPA axis. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry, 15(4), 334–345. doi.org/10.3109/15622975.2013.866693

    Pryce, C. R., Rüedi-Bettschen, D., Dettling, A. C., Weston, A., Russig, H., Ferger, B., & Feldon, J. (2005). Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neuroscience and Biobehavioral Reviews, 29(4-5), 649–674. https://doi.org/10.1016/j.neubiorev.2005.03.011

    Raichlen, D. A., Foster, A. D., Seillier, A., Giuffrida, A., & Gerdeman, G. L. (2013). Exercise-induced endocannabinoid signaling is modulated by intensity. European Journal of Applied Physiology, 113(4), 869–875. https://doi.org/10.1007/s00421-012-2495-5

    Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W. S. S., Kerk, S. Y., Hannon, G. J., & Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell, 158(2), 277–287. https://doi.org/10.1016/j.cell.2014.06.020

    Ronald, A., Pennell, C. E., & Whitehouse, A. J. (2011). Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Frontiers in Psychology, 1, 223. https://doi.org/10.3389/fpsyg.2010.00223

    Sapolsky, R. M. (2015). Stress and the brain: Individual variability and the inverted-U. Nature Neuroscience, 18(10), 1344–1346. https://doi.org/10.1038/nn.4109

    Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., Yu, Q., Sui, D., Rothbart, M. K., Fan, M., & Posner, M. I. (2007). Short-term meditation training improves attention and self-regulation. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17152–17156. doi.org/10.1073/pnas.0707678104

    Taylor, S. E. (2002). The tending instinct: How nurturing is essential for who we are and how we live. Times Books.

    Taylor, S. E. (2011). Social support: A review. In H. S. Friedman (Ed.), The Oxford Handbook of Health Psychology (pp. 189–214). Oxford University Press.

    Traustadóttir, T., Bosch, P. R., & Matt, K. S. (2005). The HPA axis response to stress in women: Effects of aging and fitness. Psychoneuroendocrinology, 30(4), 392–402. https://doi.org/10.1016/j.psyneuen.2004.11.002

    Volkow, N. D., Hampson, A. J., & Baler, R. D. (2017). Don't worry, be happy: Endocannabinoids and cannabis at the intersection of stress and reward. Annual Review of Pharmacology and Toxicology, 57, 285–308. doi.org/10.1146/annurev-phar...-010716-104615

    von Dawans, B., Fischbacher, U., Kirschbaum, C., Fehr, E., & Heinrichs, M. (2012). The social dimension of stress reactivity: Acute stress increases prosocial behavior in humans. Psychological Science, 23(6), 651–660. doi.org/10.1177/0956797611431576

    Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854. https://doi.org/10.1038/nn1276

    Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior, and Immunity, 19(4), 296–308. https://doi.org/10.1016/j.bbi.2004.09.006

    Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience and Biobehavioral Reviews, 32(6), 1073–1086. https://doi.org/10.1016/j.neubiorev.2008.03.002

    Yehuda, R., & Bierer, L. M. (2008). Transgenerational transmission of cortisol and PTSD risk. Progress in Brain Research, 167, 121–135. https://doi.org/10.1016/S0079-6123(07)67009-5

    Yehuda, R., Daskalakis, N. P., Bierer, L. M., Bader, H. N., Klengel, T., Holsboer, F., & Binder, E. B. (2016). Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological Psychiatry, 80(5), 372–380. https://doi.org/10.1016/j.biopsych.2015.08.005

    Zannas, A. S., Wiechmann, T., Gassen, N. C., & Binder, E. B. (2016). Gene-stress-epigenetic regulation of FKBP5: Clinical and translational implications. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(1), 261–274. https://doi.org/10.1038/npp.2015.235

    12.4 Clinical Implications of Stress

    Adler, L. A., Kunz, M., Chua, H. C., Rotrosen, J., & Resnick, S. G. (2004). Attention-deficit/hyperactivity disorder in adult patients with posttraumatic stress disorder (PTSD): Is ADHD a vulnerability factor?. Journal of Attention Disorders, 8(1), 11–16. doi.org/10.1177/108705470400800102

    Alkadhi, K. A. (2012). Chronic psychosocial stress exposes Alzheimer's disease phenotype in a novel at-risk model. Frontiers in Bioscience (Elite Edition), 4(1), 214–229. doi.org/10.2741/371

    Chaouloff, F., Berton, O., & Mormède, P. (1999). Serotonin and stress. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 21(2 Suppl), 28S–32S. https://doi.org/10.1016/S0893-133X(99)00008-1

    Cuffe, S. P., McCullough, E. L., & Pumariega, A. J. (1994). Comorbidity of attention deficit hyperactivity disorder and post-traumatic stress disorder. Journal of Child and Family Studies, 3(3), 327–336.

    Duffing, T. M., Greiner, S. G., Mathias, C. W., & Dougherty, D. M. (2014). Stress, substance abuse, and addiction. Current Topics in Behavioral Neurosciences, 18, 237–263. https://doi.org/10.1007/7854_2014_276

    Enoch, M. A. (2011). The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology, 214(1), 17–31. https://doi.org/10.1007/s00213-010-1916-6

    Frank, M. G., Watkins, L. R., & Maier, S. F. (2015). The permissive role of glucocorticoids in neuroinflammatory priming: Mechanisms and insights. Current Opinion in Endocrinology, Diabetes, and Obesity, 22(4), 300–305. doi.org/10.1097/MED.0000000000000168

    Frank, M. G., Fonken, L. K., Watkins, L. R., & Maier, S. F. (2019). Microglia: Neuroimmune-sensors of stress. Seminars in Cell & Developmental Biology, 94, 176–185. https://doi.org/10.1016/j.semcdb.2019.01.001

    Fenster, R. J., Lebois, L. A. M., Ressler, K. J., & Suh, J. (2018). Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man. Nature Reviews Neuroscience, 19(9), 535–551. https://doi.org/10.1038/s41583-018-0039-7

    Gracia-García, P., de-la-Cámara, C., Santabárbara, J., Lopez-Anton, R., Quintanilla, M. A., Ventura, T., Marcos, G., Campayo, A., Saz, P., Lyketsos, C., & Lobo, A. (2015). Depression and incident Alzheimer disease: The impact of disease severity. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 23(2), 119–129. https://doi.org/10.1016/j.jagp.2013.02.011

    Johansson, L., Guo, X., Waern, M., Ostling, S., Gustafson, D., Bengtsson, C., & Skoog, I. (2010). Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain: A Journal of Neurology, 133(Pt 8), 2217–2224. doi.org/10.1093/brain/awq116

    Justice, N. J. (2018). The relationship between stress and Alzheimer's disease. Neurobiology of Stress, 8, 127–133. https://doi.org/10.1016/j.ynstr.2018.04.002

    Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52(12), 1048–1060. doi.org/10.1001/archpsyc.1995.03950240066012

    Machado, A., Herrera, A. J., de Pablos, R. M., Espinosa-Oliva, A. M., Sarmiento, M., Ayala, A., Venero, J. L., Santiago, M., Villarán, R. F., Delgado-Cortés, M. J., Argüelles, S., & Cano, J. (2014). Chronic stress as a risk factor for Alzheimer's disease. Reviews in the Neurosciences, 25(6), 785–804. https://doi.org/10.1515/revneuro-2014-0035

    Mason, J. W., Giller, E. L., Kosten, T. R., Ostroff, R. B., & Podd, L. (1986). Urinary free-cortisol levels in posttraumatic stress disorder patients. The Journal of Nervous and Mental Disease, 174(3), 145–149. doi.org/10.1097/00005053-198603000-00003

    McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032, 1–7. doi.org/10.1196/annals.1314.001

    Parsons, R. G., & Ressler, K. J. (2013). Implications of memory modulation for post-traumatic stress and fear disorders. Nature Neuroscience, 16(2), 146–153. https://doi.org/10.1038/nn.3296

    Peavy, G. M., Jacobson, M. W., Salmon, D. P., Gamst, A. C., Patterson, T. L., Goldman, S., Mills, P. J., Khandrika, S., & Galasko, D. (2012). The influence of chronic stress on dementia-related diagnostic change in older adults. Alzheimer Disease and Associated Disorders, 26(3), 260–266. doi.org/10.1097/WAD.0b013e3182389a9c

    Rosenkranz, J. A., Venheim, E. R., & Padival, M. (2010). Chronic stress causes amygdala hyperexcitability in rodents. Biological Psychiatry, 67(12), 1128–1136. https://doi.org/10.1016/j.biopsych.2010.02.008

    Schmid, B., Blomeyer, D., Becker, K., Treutlein, J., Zimmermann, U. S., Buchmann, A. F., Schmidt, M. H., Esser, G., Banaschewski, T., Rietschel, M., & Laucht, M. (2009). The interaction between the dopamine transporter gene and age at onset in relation to tobacco and alcohol use among 19-year-olds. Addiction Biology, 14(4), 489–499. doi.org/10.1111/j.1369-1600.2009.00171.x

    Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. The New England Journal of Medicine, 376(25), 2459–2469. doi.org/10.1056/NEJMra1612499

    Srivareerat, M., Tran, T. T., Alzoubi, K. H., & Alkadhi, K. A. (2009). Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer's disease. Biological Psychiatry, 65(11), 918–926. https://doi.org/10.1016/j.biopsych.2008.08.021

    Tafet, G. E., & Nemeroff, C. B. (2020). Pharmacological treatment of anxiety disorders: The role of the HPA axis. Frontiers in Psychiatry, 11, 443. https://doi.org/10.3389/fpsyt.2020.00443

    Tafet, G. E., Idoyaga-Vargas, V. P., Abulafia, D. P., Calandria, J. M., Roffman, S. S., Chiovetta, A., & Shinitzky, M. (2001). Correlation between cortisol level and serotonin uptake in patients with chronic stress and depression. Cognitive, Affective & Behavioral Neuroscience, 1(4), 388–393. https://doi.org/10.3758/cabn.1.4.388

    Tschetter, K. E., Callahan, L. B., Flynn, S. A., Rahman, S., Beresford, T. P., & Ronan, P. J. (2022). Early life stress and susceptibility to addiction in adolescence. International Review of Neurobiology, 161, 277–302. https://doi.org/10.1016/bs.irn.2021.08.007

    Wolf, S. A., Boddeke, H. W., & Kettenmann, H. (2017). Microglia in physiology and disease. Annual Review of Physiology, 79, 619–643. doi.org/10.1146/annurev-physiol-022516-034406

    Yehuda, R. (2002). Post-traumatic stress disorder. The New England Journal of Medicine, 346(2), 108–114. doi.org/10.1056/NEJMra012941

    Yehuda, R., McFarlane, A. C., & Shalev, A. Y. (1998). Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biological Psychiatry, 44(12), 1305–1313. https://doi.org/10.1016/s0006-3223(98)00276-5

    Zohar, J., Yahalom, H., Kozlovsky, N., Cwikel-Hamzany, S., Matar, M. A., Kaplan, Z., Yehuda, R., & Cohen, H. (2011). High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 21(11), 796–809. https://doi.org/10.1016/j.euroneuro.2011.06.001


    This page titled 12.8: References is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?