Skip to main content
Social Sci LibreTexts

17.8: References

  • Page ID
    237043
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    17.1 Cells and Messengers of the Immune System

    Alves de Lima, K., Rustenhoven, J., Da Mesquita, S., Wall, M., Salvador, A. F., Smirnov, I., Martelossi Cebinelli, G., Mamuladze, T., Baker, W., Papadopoulos, Z., Lopes, M. B., Cao, W. S., Xie, X. S., Herz, J., & Kipnis, J. (2020). Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nature Immunology, 21(11), 1421–1429. https://doi.org/10.1038/s41590-020-0776-4

    Grob, B., Knapp, L. A., Martin, R. D., & Anzenberger, G. (1998). The major histocompatibility complex and mate choice: Inbreeding avoidance and selection of good genes. Experimental and Clinical Immunogenetics, 15(3), 119–129. doi.org/10.1159/000019063

    Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40(2), 140–155. doi.org/10.1002/glia.10161

    Havlicek, J., & Roberts, S. C. (2009). MHC-correlated mate choice in humans: A review. Psychoneuroendocrinology, 34(4), 497–512. https://doi.org/10.1016/j.psyneuen.2008.10.007

    Havlíček, J., Winternitz, J., & Roberts, S. C. (2020). Major histocompatibility complex-associated odour preferences and human mate choice: Near and far horizons. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1800), 20190260. doi.org/10.1098/rstb.2019.0260

    Hopkins, S. J., & Rothwell, N. J. (1995). Cytokines and the nervous system. I: Expression and recognition. Trends in Neurosciences, 18(2), 83–88.

    Iliff, J. J., Goldman, S. A., & Nedergaard, M. (2015). Implications of the discovery of brain lymphatic pathways. The Lancet. Neurology, 14(10), 977–979. https://doi.org/10.1016/S1474-4422(15)00221-5

    Kipnis, J., Gadani, S., & Derecki, N. C. (2012). Pro-cognitive properties of T cells. Nature Reviews. Immunology, 12(9), 663–669. https://doi.org/10.1038/nri3280

    Lord, G. (2002). Role of leptin in immunology. Nutrition Reviews, 60(10 Pt 2), S35–87. doi.org/10.1301/002966402320634913

    Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., Derecki, N. C., Castle, D., Mandell, J. W., Lee, K. S., Harris, T. H., & Kipnis, J. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523(7560), 337–341. https://doi.org/10.1038/nature14432

    Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nature Reviews. Immunology, 18(2), 134–147. https://doi.org/10.1038/nri.2017.105

    Roth, O., Sundin, J., Berglund, A., Rosenqvist, G., & Wegner, K. M. (2014). Male mate choice relies on major histocompatibility complex class I in a sex-role-reversed pipefish. Journal of Evolutionary Biology, 27(5), 929–938. doi.org/10.1111/jeb.12365

    Rothwell, N. J., & Hopkins, S. J. (1995). Cytokines and the nervous system II: Actions and mechanisms of action. Trends in Neurosciences, 18(3), 130–136. https://doi.org/10.1016/0166-2236(95)93890-a

    Rymešová, D., Králová, T., Promerová, M., Bryja, J., Tomášek, O., Svobodová, J., Šmilauer, P., Šálek, M., & Albrecht, T. (2017). Mate choice for major histocompatibility complex complementarity in a strictly monogamous bird, the grey partridge (Perdix perdix). Frontiers in Zoology, 14, 9. https://doi.org/10.1186/s12983-017-0194-0

    17.2 What Does Your Immune System Have to Do with Your Behavior?

    Abazyan, B., Nomura, J., Kannan, G., Ishizuka, K., Tamashiro, K. L., Nucifora, F., Pogorelov, V., Ladenheim, B., Yang, C., Krasnova, I. N., Cadet, J. L., Pardo, C., Mori, S., Kamiya, A., Vogel, M. W., Sawa, A., Ross, C. A., & Pletnikov, M. V. (2010). Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biological Psychiatry, 68(12), 1172–1181. https://doi.org/10.1016/j.biopsych.2010.09.022

    Aubert, A., Goodall, G., Dantzer, R., & Gheusi, G. (1997). Differential effects of lipopolysaccharide on pup retrieving and nest building in lactating mice. Brain, Behavior, and Immunity, 11(2), 107–118. https://doi.org/10.1006/brbi.1997.0485

    Avital, A., Goshen, I., Kamsler, A., Segal, M., Iverfeldt, K., Richter-Levin, G., & Yirmiya, R. (2003). Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus, 13(7), 826–834. doi.org/10.1002/hipo.10135

    Blalock, J. E. (2005). The immune system as the sixth sense. Journal of Internal Medicine, 257(2), 126–138. doi.org/10.1111/j.1365-2796.2004.01441.x

    Careaga, M., Van de Water, J., & Ashwood, P. (2010). Immune dysfunction in autism: A pathway to treatment. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 7(3), 283–292. https://doi.org/10.1016/j.nurt.2010.05.003

    Carruthers, B. M., van de Sande, M. I., De Meirleir, K. L., Klimas, N. G., Broderick, G., Mitchell, T., Staines, D., Powles, A. C., Speight, N., Vallings, R., Bateman, L., Baumgarten-Austrheim, B., Bell, D. S., Carlo-Stella, N., Chia, J., Darragh, A., Jo, D., Lewis, D., Light, A. R., Marshall-Gradisnik, S., … Stevens, S. (2011). Myalgic encephalomyelitis: International Consensus Criteria. Journal of Internal Medicine, 270(4), 327–338. doi.org/10.1111/j.1365-2796.2011.02428.x

    Devlin, B. A., Smith, C. J., & Bilbo, S. D. (2022). Sickness and the social brain: How the immune system regulates behavior across species. Brain, Behavior and Evolution, 97(3-4), 197–210. doi.org/10.1159/000521476

    Garay, P. A., & McAllister, A. K. (2010). Novel roles for immune molecules in neural development: Implications for neurodevelopmental disorders. Frontiers in Synaptic Neuroscience, 2, 136. https://doi.org/10.3389/fnsyn.2010.00136

    Harrison, N. A., Voon, V., Cercignani, M., Cooper, E. A., Pessiglione, M., & Critchley, H. D. (2016). A neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biological Psychiatry, 80(1), 73–81. https://doi.org/10.1016/j.biopsych.2015.07.018

    Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12(2), 123–137. https://doi.org/10.1016/s0149-7634(88)80004-6

    Kluger, M. J., Ringler, D. H., & Anver, M. R. (1975). Fever and survival. Science (New York, N.Y.), 188(4184), 166–168.

    Miller, A. H., & Raison, C. L. (2016). The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature Reviews. Immunology, 16(1), 22–34. https://doi.org/10.1038/nri.2015.5

    Müller, N., & Ackenheil, M. (1998). Psychoneuroimmunology and the cytokine action in the CNS: Implications for psychiatric disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 22(1), 1–33. https://doi.org/10.1016/s0278-5846(97)00179-6

    Muscatell, K. A., Moieni, M., Inagaki, T. K., Dutcher, J. M., Jevtic, I., Breen, E. C., Irwin, M. R., & Eisenberger, N. I. (2016). Exposure to an inflammatory challenge enhances neural sensitivity to negative and positive social feedback. Brain, Behavior, and Immunity, 57, 21–29. https://doi.org/10.1016/j.bbi.2016.03.022

    Nemeth, D. P., & Quan, N. (2021). Modulation of neural networks by interleukin-1. Brain Plasticity (Amsterdam, Netherlands), 7(1), 17–32. doi.org/10.3233/BPL-200109

    Quan, N., Whiteside, M., & Herkenham, M. (1998). Time course and localization patterns of interleukin-1beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience, 83(1), 281–293. https://doi.org/10.1016/s0306-4522(97)00350-3

    Vitkovic, L., Konsman, J. P., Bockaert, J., Dantzer, R., Homburger, V., & Jacque, C. (2000). Cytokine signals propagate through the brain. Molecular Psychiatry, 5(6), 604–615. https://doi.org/10.1038/sj.mp.4000813

    Yirmiya, R., Avitsur, R., Donchin, O., & Cohen, E. (1995). Interleukin-1 inhibits sexual behavior in female but not in male rats. Brain, Behavior, and Immunity, 9(3), 220–233. https://doi.org/10.1006/brbi.1995.1021

    17.3 How Does the Brain Talk to the Immune System?

    Ader, R., Kelly, K., Moynihan, J. A., Grota, L. J., & Cohen, N. (1993). Conditioned enhancement of antibody production using antigen as the unconditioned stimulus. Brain, Behavior, and Immunity, 7(4), 334–343. https://doi.org/10.1006/brbi.1993.1033

    Banks, W. A., & Erickson, M. A. (2010). The blood-brain barrier and immune function and dysfunction. Neurobiology of Disease, 37(1), 26–32. https://doi.org/10.1016/j.nbd.2009.07.031

    Belcher, A. M., Ferré, S., Martinez, P. E., & Colloca, L. (2018). Role of placebo effects in pain and neuropsychiatric disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 87(Pt B), 298–306. https://doi.org/10.1016/j.pnpbp.2017.06.003

    Ben-Shaanan, T. L., Azulay-Debby, H., Dubovik, T., Starosvetsky, E., Korin, B., Schiller, M., Green, N. L., Admon, Y., Hakim, F., Shen-Orr, S. S., & Rolls, A. (2016). Activation of the reward system boosts innate and adaptive immunity. Nature Medicine, 22(8), 940–944. https://doi.org/10.1038/nm.4133

    Ben-Shaanan, T. L., Schiller, M., Azulay-Debby, H., Korin, B., Boshnak, N., Koren, T., Krot, M., Shakya, J., Rahat, M. A., Hakim, F., & Rolls, A. (2018). Modulation of anti-tumor immunity by the brain's reward system. Nature Communications, 9(1), 2723. https://doi.org/10.1038/s41467-018-05283-5

    Berkenbosch, F., van Oers, J., del Rey, A., Tilders, F., & Besedovsky, H. (1987). Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science (New York, N.Y.), 238(4826), 524–526. doi.org/10.1126/science.2443979

    Berthoud, H. R., & Neuhuber, W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience: Basic & Clinical, 85(1-3), 1–17. https://doi.org/10.1016/S1566-0702(00)00215-0

    Blatteis, C. M. (1992). Role of the OVLT in the febrile response to circulating pyrogens. Progress in Brain Research, 91, 409–412. https://doi.org/10.1016/s0079-6123(08)62360-2

    Bordt, E. A., & Bilbo, S. D. (2020). Stressed-out T cells fragment the mind. Trends in Immunology, 41(2), 94–97. https://doi.org/10.1016/j.it.2019.12.008

    Bosch, J. A., Engeland, C. G., Cacioppo, J. T., & Marucha, P. T. (2007). Depressive symptoms predict mucosal wound healing. Psychosomatic Medicine, 69(7), 597–605. doi.org/10.1097/PSY.0b013e318148c682

    Caldwell, F. T., Graves, D. B., & Wallace, B. H. (1998). Studies on the mechanism of fever after intravenous administration of endotoxin. The Journal of Trauma, 44(2), 304–312. doi.org/10.1097/00005373-199802000-00012

    Cohen, N., Moynihan, J. A., & Ader, R. (1994). Pavlovian conditioning of the immune system. International Archives of Allergy and Immunology, 105(2), 101–106. doi.org/10.1159/000236811

    Dhabhar, F. S. (2000). Acute stress enhances while chronic stress suppresses skin immunity. The role of stress hormones and leukocyte trafficking. Annals of the New York Academy of Sciences, 917, 876–893. doi.org/10.1111/j.1749-6632.2000.tb05454.x

    Dhabhar, F. S., & McEwen, B. S. (1999). Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America, 96(3), 1059–1064. doi.org/10.1073/pnas.96.3.1059

    Dhabhar, F. S., Miller, A. H., McEwen, B. S., & Spencer, R. L. (1996). Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. Journal of Immunology (Baltimore, Md. : 1950), 157(4), 1638–1644.

    Dhabhar, F. S., & Viswanathan, K. (2005). Short-term stress experienced at time of immunization induces a long-lasting increase in immunologic memory. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289(3), R738–R744. doi.org/10.1152/ajpregu.00145.2005

    Fan, K. Q., Li, Y. Y., Wang, H. L., Mao, X. T., Guo, J. X., Wang, F., Huang, L. J., Li, Y. N., Ma, X. Y., Gao, Z. J., Chen, W., Qian, D. D., Xue, W. J., Cao, Q., Zhang, L., Shen, L., Zhang, L., Tong, C., Zhong, J. Y., Lu, W., … Jin, J. (2019). Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell, 179(4), 864–879.e19. https://doi.org/10.1016/j.cell.2019.10.001

    Hallam, J., Jones, T., Alley, J., & Kohut, M. L. (2022). Exercise after influenza or COVID-19 vaccination increases serum antibody without an increase in side effects. Brain, Behavior, and Immunity, 102, 1–10. https://doi.org/10.1016/j.bbi.2022.02.005

    Hansen, M. K., O'Connor, K. A., Goehler, L. E., Watkins, L. R., & Maier, S. F. (2001). The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 280(4), R929–R934. doi.org/10.1152/ajpregu.2001.280.4.R929

    Hawkins, B. T., & Davis, T. P. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmacological Reviews, 57(2), 173–185. https://doi.org/10.1124/pr.57.2.4

    Irwin, M., Patterson, T., Smith, T. L., Caldwell, C., Brown, S. A., Gillin, J. C., & Grant, I. (1990). Reduction of immune function in life stress and depression. Biological Psychiatry, 27(1), 22–30. https://doi.org/10.1016/0006-3223(90)90016-u

    Kieco (95)92899-5" rel="freelink" title="https://doi.org/10.1016/s0140-6736(95)92899-5">https://doi.org/10.1016/s0140-6736(95)92899-5

    Lee, H. Y., Whiteside, M. B., & Herkenham, M. (1998). Area postrema removal abolishes stimulatory effects of intravenous interleukin-1beta on hypothalamic-pituitary-adrenal axis activity and c-fos mRNA in the hypothalamic paraventricular nucleus. Brain Research Bulletin, 46(6), 495–503. https://doi.org/10.1016/s0361-9230(98)00045-8

    Luheshi, G. N., Bluthé, R. M., Rushforth, D., Mulcahy, N., Konsman, J. P., Goldbach, M., & Dantzer, R. (2000). Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. Autonomic Neuroscience: Basic & Clinical, 85(1-3), 127–132. https://doi.org/10.1016/S1566-0702(00)00231-9

    Maier, S. F., & Watkins, L. R. (1998). Cytokines for psychologists: Implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Review, 105(1), 83–107. doi.org/10.1037/0033-295x.105.1.83

    Marucha, P. T., Kieco -00025" rel="freelink" title="doi.org/10.1097/00006842-199805000-00025">doi.org/10.1097/00006842-199805000-00025

    McKim, D. B., Weber, M. D., Niraula, A., Sawicki, C. M., Liu, X., Jarrett, B. L., Ramirez-Chan, K., Wang, Y., Roeth, R. M., Sucaldito, A. D., Sobol, C. G., Quan, N., Sheridan, J. F., & Godbout, J. P. (2018). Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Molecular Psychiatry, 23(6), 1421–1431. https://doi.org/10.1038/mp.2017.64

    Medawar, P. B. (1948). Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology, 29(1), 58–69.

    Pan, W., & Kastin, A. J. (2008). Cytokine transport across the injured blood-spinal cord barrier. Current Pharmaceutical Design, 14(16), 1620–1624. https://doi.org/10.2174/138161208784705450

    Rosas-Ballina, M., Olofsson, P. S., Ochani, M., Valdés-Ferrer, S. I., Levine, Y. A., Reardon, C., Tusche, M. W., Pavlov, V. A., Andersson, U., Chavan, S., Mak, T. W., & Tracey, K. J. (2011). Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science (New York, N.Y.), 334(6052), 98–101. doi.org/10.1126/science.1209985

    Rosenberger, P. H., Jokl, P., & Ickovics, J. (2006). Psychosocial factors and surgical outcomes: An evidence-based literature review. The Journal of the American Academy of Orthopaedic Surgeons, 14(7), 397–405. doi.org/10.5435/00124635-200607000-00002

    Sainz, B., Loutsch, J. M., Marquart, M. E., & Hill, J. M. (2001). Stress-associated immunomodulation and herpes simplex virus infections. Medical Hypotheses, 56(3), 348–356. https://doi.org/10.1054/mehy.2000.1219

    Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P., & Vale, W. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science (New York, N.Y.), 238(4826), 522–524. doi.org/10.1126/science.2821621

    Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89. doi.org/10.1210/edrv.21.1.0389

    Tracey, K. J. (2002). The inflammatory reflex. Nature, 420(6917), 853–859. https://doi.org/10.1038/nature01321

    Turnbull, A. V., & Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiological Reviews, 79(1), 1–71. doi.org/10.1152/physrev.1999.79.1.1

    Weber, M. D., Godbout, J. P., & Sheridan, J. F. (2017). Repeated social defeat, neuroinflammation, and behavior: Monocytes carry the signal. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 42(1), 46–61. https://doi.org/10.1038/npp.2016.102

    Wexler, B. C., Dolgin, A. E., & Tryczynski, E. W. (1957). Effects of a bacterial polysaccharide (piromen) on the pituitary-adrenal axis: Adrenal ascorbic acid, cholesterol and histologic alterations. Endocrinology, 61(3), 300–308. doi.org/10.1210/endo-61-3-300

    Yarlagadda, A., Alfson, E., & Clayton, A. H. (2009). The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont (Pa. : Township)), 6(11), 18–22.

    17.4 What Do Immune System Signals Do Once They Reach the Brain?

    Atladóttir, H. O., Thorsen, P., Østergaard, L., Schendel, D. E., Lemcke, S., Abdallah, M., & Parner, E. T. (2010). Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(12), 1423–1430. https://doi.org/10.1007/s10803-010-1006-y

    Ayata, P., Badimon, A., Strasburger, H. J., Duff, M. K., Montgomery, S. E., Loh, Y. E., Ebert, A., Pimenova, A. A., Ramirez, B. R., Chan, A. T., Sullivan, J. M., Purushothaman, I., Scarpa, J. R., Goate, A. M., Busslinger, M., Shen, L., Losic, B., & Schaefer, A. (2018). Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 21(8), 1049–1060. https://doi.org/10.1038/s41593-018-0192-3

    Bessis, A., Béchade, C., Bernard, D., & Roumier, A. (2007). Microglial control of neuronal death and synaptic properties. Glia, 55(3), 233–238. doi.org/10.1002/glia.20459

    Bilbo, S. D., Block, C. L., Bolton, J. L., Hanamsagar, R., & Tran, P. K. (2018). Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Experimental Neurology, 299(Pt A), 241–251. https://doi.org/10.1016/j.expneurol.2017.07.002

    Block, C. L., Eroglu, O., Mague, S. D., Smith, C. J., Ceasrine, A. M., Sriworarat, C., Blount, C., Beben, K. A., Malacon, K. E., Ndubuizu, N., Talbot, A., Gallagher, N. M., Chan Jo, Y., Nyangacha, T., Carlson, D. E., Dzirasa, K., Eroglu, C., & Bilbo, S. D. (2022). Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Reports, 40(5), 111161. https://doi.org/10.1016/j.celrep.2022.111161

    Cao, P., Chen, C., Liu, A., Shan, Q., Zhu, X., Jia, C., Peng, X., Zhang, M., Farzinpour, Z., Zhou, W., Wang, H., Zhou, J. N., Song, X., Wang, L., Tao, W., Zheng, C., Zhang, Y., Ding, Y. Q., Jin, Y., Xu, L., & Zhang, Z. (2021). Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron, 109(16), 2573–2589.e9. https://doi.org/10.1016/j.neuron.2021.06.012

    Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. The American Journal of Psychiatry, 160(6), 1041–1052. https://doi.org/10.1176/appi.ajp.160.6.1041

    Chen, S. K., Tvrdik, P., Peden, E., Cho, S., Wu, S., Spangrude, G., & Capecchi, M. R. (2010). Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell, 141(5), 775–785. https://doi.org/10.1016/j.cell.2010.03.055

    Cooper, S. J. (2005). Donald O. Hebb's synapse and learning rule: A history and commentary. Neuroscience and Biobehavioral Reviews, 28(8), 851–874. https://doi.org/10.1016/j.neubiorev.2004.09.009

    Cotella, E. M., Gómez, A. S., Lemen, P., Chen, C., Fernández, G., Hansen, C., Herman, J. P., & Paglini, M. G. (2019). Long-term impact of chronic variable stress in adolescence versus adulthood. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 88, 303–310. https://doi.org/10.1016/j.pnpbp.2018.08.003

    Cunningham, C. L., Martínez-Cerdeño, V., & Noctor, S. C. (2013). Microglia regulate the number of neural precursor cells in the developing cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(10), 4216–4233. https://doi.org/10.1523/JNEUROSCI.3441-12.2013

    Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8(6), 752–758. https://doi.org/10.1038/nn1472

    De, S., Van Deren, D., Peden, E., Hockin, M., Boulet, A., Titen, S., & Capecchi, M. R. (2018). Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development (Cambridge, England), 145(13), dev152306. doi.org/10.1242/dev.152306

    Dziabis, J. E., & Bilbo, S. D. (2022). Microglia and sensitive periods in brain development. Current Topics in Behavioral Neurosciences, 53, 55–78. https://doi.org/10.1007/7854_2021_242

    Giovanoli, S., Engler, H., Engler, A., Richetto, J., Feldon, J., Riva, M. A., Schedlowski, M., & Meyer, U. (2016). Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Translational Psychiatry, 6(4), e772. https://doi.org/10.1038/tp.2016.38

    Hume, D. A., Caruso, M., Ferrari-Cestari, M., Summers, K. M., Pridans, C., & Irvine, K. M. (2020). Phenotypic impacts of CSF1R deficiencies in humans and model organisms. Journal of Leukocyte Biology, 107(2), 205–219. doi.org/10.1002/JLB.MR0519-143R

    Hanamsagar, R., & Bilbo, S. D. (2017). Environment matters: Microglia function and dysfunction in a changing world. Current Opinion in Neurobiology, 47, 146–155. https://doi.org/10.1016/j.conb.2017.10.007

    Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K. M., Shi, Q., Rosenthal, A., Barres, B. A., Lemere, C. A., Selkoe, D. J., & Stevens, B. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science (New York, N.Y.), 352(6286), 712–716. doi.org/10.1126/science.aad8373

    Knuesel, I., Chicha, L., Britschgi, M., Schobel, S. A., Bodmer, M., Hellings, J. A., Toovey, S., & Prinssen, E. P. (2014). Maternal immune activation and abnormal brain development across CNS disorders. Nature Reviews. Neurology, 10(11), 643–660. https://doi.org/10.1038/nrneurol.2014.187

    Kopec, A. M., Smith, C. J., Ayre, N. R., Sweat, S. C., & Bilbo, S. D. (2018). Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nature Communications, 9(1), 3769. https://doi.org/10.1038/s41467-018-06118-z

    Kopec, A. M., Smith, C. J., & Bilbo, S. D. (2019). Neuro-immune mechanisms regulating social behavior: Dopamine as mediator?. Trends in Neurosciences, 42(5), 337–348. https://doi.org/10.1016/j.tins.2019.02.005

    Kwon, H. K., Choi, G. B., & Huh, J. R. (2022). Maternal inflammation and its ramifications on fetal neurodevelopment. Trends in Immunology, 43(3), 230–244. https://doi.org/10.1016/j.it.2022.01.007

    Li, Y., Du, X. F., Liu, C. S., Wen, Z. L., & Du, J. L. (2012). Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Developmental Cell, 23(6), 1189–1202. https://doi.org/10.1016/j.devcel.2012.10.027

    Luo, L., & O'Leary, D. D. (2005). Axon retraction and degeneration in development and disease. Annual Review of Neuroscience, 28, 127–156. doi.org/10.1146/annurev.neur....061604.135632

    Lynch, M. A. (2022). Exploring sex-related differences in microglia may be a game-changer in precision medicine. Frontiers in Aging Neuroscience, 14, 868448. https://doi.org/10.3389/fnagi.2022.868448

    Marín-Teva, J. L., Dusart, I., Colin, C., Gervais, A., van Rooijen, N., & Mallat, M. (2004). Microglia promote the death of developing Purkinje cells. Neuron, 41(4), 535–547. https://doi.org/10.1016/s0896-6273(04)00069-8

    Nguyen, P. T., Dorman, L. C., Pan, S., Vainchtein, I. D., Han, R. T., Nakao-Inoue, H., Taloma, S. E., Barron, J. J., Molofsky, A. B., Kheirbek, M. A., & Molofsky, A. V. (2020). Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell, 182(2), 388–403.e15. https://doi.org/10.1016/j.cell.2020.05.050

    Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, N.Y.), 308(5726), 1314–1318. doi.org/10.1126/science.1110647

    Oosterhof, N., Chang, I. J., Karimiani, E. G., Kuil, L. E., Jensen, D. M., Daza, R., Young, E., Astle, L., van der Linde, H. C., Shivaram, G. M., Demmers, J., Latimer, C. S., Keene, C. D., Loter, E., Maroofian, R., van Ham, T. J., Hevner, R. F., & Bennett, J. T. (2019). Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. American Journal of Human Genetics, 104(5), 936–947. https://doi.org/10.1016/j.ajhg.2019.03.010

    Schafer, D. P., Lehrman, E. K., Kautzman, A. G., Koyama, R., Mardinly, A. R., Yamasaki, R., Ransohoff, R. M., Greenberg, M. E., Barres, B. A., & Stevens, B. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 74(4), 691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., Van Doren, V., Genovese, G., Rose, S. A., Handsaker, R. E., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly, M. J., Carroll, M. C., Stevens, B., & McCarroll, S. A. (2022). Author correction: Schizophrenia risk from complex variation of complement component 4. Nature, 601(7892), E4–E5. https://doi.org/10.1038/s41586-021-04202-x

    Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(40), 10695–10702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007

    Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(13), 3974–3980. https://doi.org/10.1523/JNEUROSCI.4363-08.2009

    Wang, C., Yue, H., Hu, Z., Shen, Y., Ma, J., Li, J., Wang, X. D., Wang, L., Sun, B., Shi, P., Wang, L., & Gu, Y. (2020). Microglia mediate forgetting via complement-dependent synaptic elimination. Science (New York, N.Y.), 367(6478), 688–694. doi.org/10.1126/science.aaz2288

    Werneburg, S., Jung, J., Kunjamma, R. B., Ha, S. K., Luciano, N. J., Willis, C. M., Gao, G., Biscola, N. P., Havton, L. A., Crocker, S. J., Popko, B., Reich, D. S., & Schafer, D. P. (2020). Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity, 52(1), 167–182.e7. https://doi.org/10.1016/j.immuni.2019.12.004

    Williamson, L. L., Sholar, P. W., Mistry, R. S., Smith, S. H., & Bilbo, S. D. (2011). Microglia and memory: Modulation by early-life infection. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(43), 15511–15521. https://doi.org/10.1523/JNEUROSCI.3688-11.2011

    Yohn, N. L., & Blendy, J. A. (2017). Adolescent chronic unpredictable stress exposure is a sensitive window for long-term changes in adult behavior in mice. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 42(8), 1670–1678. https://doi.org/10.1038/npp.2017.11


    This page titled 17.8: References is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?