Skip to main content
Social Sci LibreTexts

2.6: Neurophysiological Background

  • Page ID
    • Wikipedia

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Presenting Neurophysiology in its entirety would be enough to fill several books. Fortunately we do not have to concern ourselves with most of these facts. Instead, let's just focus on the aspects that are really relevant to problem solving. Nevertheless this topic is quite complex and problem solving cannot be attributed to one single brain area. Rather there are systems of several brain areas working together to perform a specific task. This is best shown by an example:

    In 1994 Paolo Nichelli and coworkers used the method of PET (Positron Emission Tomography), to localise certain brain areas, which are involved in solving various chess problems. In the following table you can see which brain area was active during a specific task:
    Task Location of Brain activity
    • Identifying chess pieces
    • determining location of pieces
    • Thinking about making a move
    • Remembering a pieces move
    • Planning and executing strategies
    • Pathway from Occipital to Temporal Lobe

    (also called the "what"-pathway of visual processing)

    • Pathway from Occipital to parietal Lobe

    (also called the "where"-pathway of visual processing)

    • Premotor area
    • Hippocampus

    (forming new memories)

    • Prefrontal cortex


    Lobes of the Brain

    One of the key tasks, namely planning and executing strategies, is performed by a brain area which also plays an important role for several other tasks correlated with problem solving – the prefrontal cortex (PFC). This can be made clear if you take a look at several examples of damages to the PFC and their effects on the ability to solve problems.
    Patients with a lesion in this brain area have difficulty switching from one behaviouristic pattern to another. A well known example is the wisconsin card-sorting task. A patient with a PFC lesion who is told to separate all blue cards from a deck, would continue sorting out the blue ones, even if the experimenter told him to sort out all brown cards. Transferred to a more complex problem, this person would most likely fail, because he is not flexible enough to change his strategy after running into a dead end.
    Another example is the one of a young homemaker, who had a tumour in the frontal lobe. Even though she was able to cook individual dishes, preparing a whole family meal was an infeasible task for her.

    As the examples above illustrate, the structure of our brain seems to be of great importance regarding problem solving, i.e. cognitive life. But how was our cognitive apparatus designed? How did perception-action integration as a central species specific property come about?

    This page titled 2.6: Neurophysiological Background is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Wikipedia via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.