Skip to main content
Social Sci LibreTexts

10.2: Resource Scarcity Through the Ages

  • Page ID
    77001
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Dealing with the challenge of resource scarcity is nothing new in human history. Indeed, the history of humans can be seen largely as a series of responses to resource needs. Conventional methods for addressing these needs can be grouped into three major categories: geographical expansion, increased procuring efficiency and substitution.

    Geographical Expansion

    Of these three categories, geographical expansion is perhaps the easiest to visualize. If we are running out of resource ‘X’ here, then perhaps more ‘X’ is available over there. This logic sits at the heart of numerous wars and exploratory expeditions into uncharted areas. While expansion into new resource-rich areas can be observed in a number of different contexts, I will use the example of global fisheries. Archaeological evidence from Europe on the topic suggests that a shift in diet occurred around 1000 years ago from freshwater fish to marine species. In his book An Unnatural History of the Sea, Callum Roberts (2007) suggests this shift was due to a combination of a decrease in supply of freshwater fish due to declining environmental conditions of European rivers and the increased demand for fish.

    Having significantly depleted stocks of freshwater fish, Europeans looked to the sea, and the sea provided. For example, early accounts of the Newfoundland cod fishery describe a sea “swarming with fish, which can be taken not only with the net, but in baskets let down with a stone, so that it sinks in the water” (quoted in Roberts, 2007, p. 33). Fish, however, were not the only plentiful source of meat. In the Caribbean Christopher Columbus and his crew saw sea turtle populations so large “that it seemed that the ships would run aground on them and were as if bathing in them” (quoted in Roberts, 2007, p. 63). Often these types of accounts are accompanied by statements regarding the impossibility of exhausting such abundant resources, but human appetites continually proved to be more than a match for the sea’s abundance. The Newfoundland cod fishery, which fuelled that region’s growth for centuries, collapsed in the 1990s and is still closed to commercial fishing. Sea turtles are now an uncommon sight in the Caribbean and most other places, as all species of sea turtles are listed as threatened, endangered, or critically endangered.

    However, as each fishery collapsed, another was there to take its place. Ransom Myer and Boris Worm (2003) illustrated this pattern in modern times using commercial fishing catch data. They show that starting from the 1950s, periods of intensive fishing were followed by lower catch-per-unit-effort numbers (abbreviated CPUE, a common measure for the health of a fishery). As those numbers dropped, commercial fleets shifted to new fishing grounds, where CPUE figures were initially high. In time, the CPUE would decrease again, prompting commercial fleets again to shift to new richer waters. By the end of the Myer and Worms data set in the 1980s, commercial fishing fleets spanned the globe with no fisheries achieving the high yields seen in the 1950s.

    Increased Procuring Efficiency

    When a resource becomes harder to get, the typical response is to try to become better at getting it. In the second category of responses—increased procuring efficiency—decrease in a resource is met with improvements being made to methods used for acquiring those resources. Here again, fishing provides an excellent example. Fishing technology has seen many improvements since the days of rudimentary hooks at the ends of flaxen strings. Each technological advance—including the modern use of spotting planes and sonar for finding fish and mile-long lines baited with thousands of hooks for catching them—have enabled fishers to increase their fishing success even in the face of decreasing fish populations.

    The same pattern can be seen in better detection and drilling capabilities of the oil industry. Estimates of available oil reserves increased from 635 billion barrels in 1973 to 1,148 billion barrels in 2003 (Watkins, 2006). These increases did not represent an actual increase of oil deposits within the Earth’s crust, but rather our increased ability to locate and access those deposits. In other words, an apparent scarcity of a resource can be addressed (at least temporarily) by improving our ability to find and obtain that resource.

    Substitution

    The last category of responses to scarcity is substitution. If we run out of a resource, we can often find a different resource that satisfies the same need. In a sense, we can view the early European shift from freshwater fish to marine species as an example of substitution. As freshwater species became unable to meet demand, fishers began to provide marine species, which could serve the same purpose. Modern fish substitutions make for some interesting marketing campaigns. For example, the spiny dogfish—a bottom-dwelling species of shark—was once considered a nuisance by fishers. Not only were they undesirable commercially, but they tore nets, stole bait, and even pilfered caught fish that were still on the hook. As populations of more valuable species declined, however, the spiny dogfish itself became the focus of a new commercial fishery, but since people might be reluctant to eat something called dogfish, the name was changed to the more palatable moniker, rock salmon.

    These methods for dealing with scarcity have taken us far as a clever and adaptable species. However, there is a limit to their effectiveness. Eventually, we run out of new geographical areas to provide untapped resources and at some point the amount of available resources meet their physical limits. There are no more uncharted fisheries to be found and by most accounts the days of plentiful, low-cost oil are behind us (e.g. Campbell & Laherre, 1998; Hirsch, 2005; Owen et al., 2010). This leaves substitution, but as we shall see, there are some resources for which there are no adequate substitutes.


    10.2: Resource Scarcity Through the Ages is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?