Skip to main content
Social Sci LibreTexts

10.3: Frontiers of Political Science Research Methods

  • Page ID
    76249
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Political science research methods is a dynamic area of study, research, and practice. Advances in computer technology, modeling, and interdisciplinary work is pushing political science in new and exciting directions. There are several frontiers of research methods within the discipline that represent the cutting edge of the field. Let’s explore just one of these directions.

    Geographic information systems, or GIS for short, use spatial data to help understand the world, identify relationships, and discover patterns with respect to place. Can you remember a world where you didn’t have Google Maps to help you get from point A to point B? Before the rapid expansion of GIS, people relied on a paper map. People would then estimate the time it would take to travel using distance divided by miles per hour, not taking into traffic or weather, because the data was simply not integrated.

    GIS is a relatively new tool to political science, but it has been used in politics since the founding of the country. For example, when carving out new states longitudinal and latitudinal lines were used to denote the boundaries of states. State legislatures, when drawing new congressional districts or state legislative districts, would use maps to see how the party in power to give itself the upper hand in electing their peers. Campaigns would use maps of polling locations to determine where to deploy the volunteers to help encourage people to vote. All these are examples of our rudimentary GIS, this case maps merged with political knowledge, was used.

    Researchers are increasingly using GIS to conduct and visually present research findings. For example, how would you decide where to build a nuclear power plant? Now, this may not seem like a political question initially, more a technical or engineering question but in reality, the country of Nigeria is actively considering whether and where to build nuclear power plants. The Nigerian Atomic Energy Commission is tasked with answering this question. Using GIS software, Eluyemi et. al. (2020) compare proposed sites by the Commission with all available tectonic maps. In their research article, they present 12 figures to help geographically contextualize potential nuclear power plant sites. With this information now publicly available, government officials, interest groups, and the people can more meaningfully engage in a debate about the utility of this energy source.

    In addition to GIS as a way to conduct and visually presented information, there is a related field called spatial statistics. As was discussed in the chapter about Quantitative Research Methods, traditional statistics has been a staple in political science research for decades. What makes spatial statistics unique is that it integrates geocoded data into analyses. Why is geocoded data important to integrate into statistical analyses? First, statistics relies on an assumption that units of observation are independent and identically distributed. What this means is that how one person responds to a survey question should have no bearing on how another person responds to the same survey question. Or, what the state of California does with respect to gun control laws has no influence on what the states of Oregon, Nevada, and Arizona do with respect to gun control laws. In both of these examples, we can imagine how the actions of one person, or one state may influence the actions of another person or another state.

    Spatial statistics allow the researcher to mathematically connect units of observation together based on their geographic location with one another. By making this connection, we can begin to measure the influence that one person or state can have on another. This is important because we are aware that such connections exist, but traditional statistics is unable to establish these connections. By measuring this influence that units can have on one another, we can better determine how strong the relationship is between a set of factors and the outcome that were interested. For example, what if the state of California increases its gas tax? Would we expect to see the states of Oregon, Nevada, or Arizona also increase their gas tax to keep up with California? Or would we expect to see the opposite, where neighboring states would lower their gas tax to demonstrate how competitive they were compared to the Golden State? By using spatial statistics, we can consider that geographic proximity, while also considering how the state demographics, or political party control may also influence this decision.


    This page titled 10.3: Frontiers of Political Science Research Methods is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Josue Franco, Charlotte Lee, Kau Vue, Dino Bozonelos, Masahiro Omae, & Steven Cauchon (ASCCC Open Educational Resources Initiative (OERI)) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?