Skip to main content
Social Sci LibreTexts

1.1: Chapter 1- How We Use Our Expectations

  • Page ID
    55291
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Chapter 1 Learning Objectives

    • Provide examples of how salience and accessibility influence information processing.
    • Review, differentiate and give examples of the cognitive heuristics that influence social judgment.
    • Summarize and give examples of the importance of social cognition in everyday life.

    Once we have developed a set of schemas and attitudes, we naturally use that information to help us judge and respond to others. Our expectations help us think about, size up, and make sense of individuals, groups of people, and the relationships among people. If we have learned, for example, that someone is friendly and interested in us, we are likely to approach them; if we have learned that they are threatening or unlikable, we will be more likely to withdraw. And if we believe that a person has committed a crime, we may process new information in a manner that helps convince us that our judgment was correct. In this section, we will consider how we use our stored knowledge to come to accurate (and sometimes inaccurate) conclusions about our social worlds. Table 2.1 “How Expectations Influence Our Social Cognition” summarizes the concepts that we will discuss, some of the many ways that our existing schemas and attitudes influence how we respond to the information around us.

    Table 2.1 How Expectations Influence Our Social Cognition

    Cognitive Process Description Example
    Cognitive accessibility Some schemas and attitudes are more accessible than others. We may think a lot about our new haircut because it is important for us.
    Salience Some stimuli, such as those that are unusual, colorful, or moving, grab our attention. We may base our judgments on a single unusual event and ignore hundreds of other events that are more usual.
    Representativeness heuristic We tend to make judgments according to how well the event matches our expectations. After a coin has come up heads many times in a row, we may erroneously think that the next flip is more likely to be tails.
    Availability heuristic Things that come to mind easily tend to be seen as more common. We may overestimate the crime statistics in our own area because these crimes are so easy to recall.
    Anchoring and adjustment Although we try to adjust our judgments away from them, our decisions are overly based on the things that are most highly accessible in memory. We may buy more of a product when it is advertised in bulk than when it is advertised as a single item.
    Counterfactual thinking We may “replay” events such that they turn out differently—especially when only minor changes in the events leading up to them make a difference. We may feel particularly bad about events that might not have occurred if only a small change might have prevented them.
    False consensus bias We tend to see other people as similar to us. We are surprised when other people have different political opinions or values.
    Overconfidence We tend to have more confidence in our skills, abilities, and judgments than is objectively warranted. Eyewitnesses are often extremely confident that their identifications are accurate, even when they are not.

    Automatic Versus Controlled Cognition

    A good part of both cognition and social cognition is spontaneous or automatic. Automatic cognition refers to thinking that occurs out of our awareness, quickly, and without taking much effort (Ferguson & Bargh, 2003; Ferguson, Hassin, & Bargh, 2008). The things that we do most frequently tend to become more automatic each time we do them until they reach a level where they don’t really require us to think about them very much. Most of us can ride a bike and operate a television remote control in an automatic way. Even though it took some work to do these things when we were first learning them, it just doesn’t take much effort anymore. And because we spend a lot of time making judgments about others, many of these judgments (and particularly those about people we don’t know very well and who don’t matter much to us) are made automatically (Willis & Todorov, 2006).

    Because automatic thinking occurs outside of our conscious awareness, we frequently have no idea that it is occurring and influencing our judgments or behaviors. You might remember a time when you came back from your classes, opened the door to your dorm room, and 30 seconds later couldn’t remember where you had put your keys! You know that you must have used the keys to get in, and you know you must have put them somewhere, but you simply don’t remember a thing about it. Because many of our everyday judgments and behaviors are performed “on automatic,” we may not always be aware that they are occurring or influencing us.

    It is, of course, a good thing that many things operate automatically because it would be a real pain to have to think about them all the time. If you couldn’t drive a car automatically, you wouldn’t be able to talk to the other people riding with you or listen to the radio at the same time—you’d have to be putting most of your attention into driving. On the other hand, relying on our snap judgments about Bianca—that she’s likely to be expressive, for instance—can be erroneous. Sometimes we need to—and should—go beyond automatic cognition and consider people more carefully. When we deliberately size up and think about something—for instance another person—we call it thoughtful cognition or controlled cognition.

    Although you might think that controlled cognition would be more common and that automatic thinking would be less likely, that is not always the case. The problem is that thinking takes effort and time, and we often don’t have too many of those things available. As a result, we frequently rely on automatic cognition, and these processes—acting outside of our awareness—have a big effect on our behaviors. In the following Research Focus, we will consider an example of a study that uses a common social cognitive procedure known as priming — a technique in which information is temporarily brought into memory through exposure to situational events—and that shows that priming can influence judgments entirely out of awareness.

    Research Focus

    Behavioral Effects of Priming

  • >In one demonstration of how automatic cognition can influence our behaviors without us being aware of them, John Bargh and his colleagues (Bargh, Chen, & Burrows, 1996) conducted two studies, each with the exact same procedure. In the experiments, they showed college students sets of five scrambled words. The students were to unscramble the five words in each set to make a sentence. Furthermore, for half of the research participants, the words were related to the stereotype of the elderly. These participants saw words such as “in Florida retired live people” and “bingo man the forgetful plays.”

  • >The other half of the research participants also made sentences but did so out of words that had nothing to do with the elderly stereotype. The purpose of this task was to prime (activate) the schema of elderly people in memory for some of the participants but not for others.

  • >The experimenters then assessed whether the priming of elderly stereotypes would have any effect on the students’ behavior—and indeed it did. When each research participant had gathered all his or her belongings, thinking that the experiment was over, the experimenter thanked him or her for participating and gave directions to the closest elevator. Then, without the participant knowing it, the experimenters recorded the amount of time that the participant spent walking from the doorway of the experimental room toward the elevator. As you can see in the following figure, the same results were found in both experiments—the participants who had made sentences using words related to the elderly stereotype took on the behaviors of the elderly—they walked significantly more slowly (in fact, about 12% more slowly across the two studies) as they left the experimental room.
    In two separate experiments, Bargh, Chen, and Borroughs (1996) found that students who had been exposed to words related to the elderly stereotype walked more slowly than those who had been exposed to more neutral words.
    Figure 2.3 Automatic Priming and Behavior

    In two separate experiments, Bargh, Chen, and Borroughs (1996) found that students who had been exposed to words related to the elderly stereotype walked more slowly than those who had been exposed to more neutral words.

  • >To determine if these priming effects occurred out of the conscious awareness of the participants, Bargh and his colleagues asked the third group of students to complete the priming task and then to indicate whether they thought the words they had used to make the sentences had any relationship to each other or could possibly have influenced their behavior in any way. These students had no awareness of the possibility that the words might have been related to the elderly or could have influenced their behavior.

  • >The point of these experiments, and many others like them, is clear—it is quite possible that our judgments and behaviors are influenced by our social situations, and this influence may be entirely outside of our conscious awareness. To return again to Bianca, it is even possible that we notice her nationality and that our beliefs about Italians influence our responses to her, even though we have no idea that they are doing so and really believe that they have not. It is in this way that our stereotypes may have their insidious effects, and it is exactly these processes that may have led to a mistaken eyewitness account in the case of Rickie Johnson.

    Salience and Accessibility Determine Which Expectations We Use

    We each have a large number of schemas that we might bring to bear on any type of judgment we might make. When thinking about Bianca, for instance, we might focus on her nationality, her gender, her physical attractiveness, her intelligence, or any of many other possible features. And we will react to Bianca differently depending on which schemas we use. Schema activation is determined both by characteristics of the person we are judging—the salience of the characteristics—and by the current activation of the schema in the individual—the cognitive accessibility of the schema.

    Salience

  • One determinant of which schemas are likely to be used in social justice is the extent to which we attend to particular features of the person or situation that we are responding to. We are more likely to judge people on the basis of characteristics that are salient, meaning that they attract our attention when we see something or someone with them. Things that are unusual, negative, colorful, bright and moving are more salient and thus more likely to be attended to than are things that do not have these characteristics (McArthur & Post, 1977; Taylor & Fiske, 1978).

    Collage: a man pretending two feathers are a moustache, a man jumping on a sand dune, a woman in a tank top with many tattoos
    Which of these people are more salient and therefore more likely to attract your attention? Erich Ferdinand – The Purger – CC BY 2.0; Hamad AL-Mohannna – Jump – CC BY-ND 2.0; LethaColleen – Session 5: Finished! – CC BY-NC-ND 2.0.

    We are more likely to initially judge people on the basis of their sex, race, age, and physical attractiveness, rather than on, say, their religious orientation or their political beliefs, in part because these features are so salient when we see them (Brewer, 1988). Another thing that makes something particularly salient is its infrequency or unusualness. Because Bianca is from Italy and very few other people in our school are, that characteristic is something that we notice—it is salient, and we are therefore likely to attend to it. That she is also a woman is—at least in this context—less salient.

    The salience of the stimuli in our social worlds may sometimes lead us to make judgments on the basis of information that is actually less informative than is other less salient information. Imagine, for instance, that you wanted to buy a new music player for yourself. You’ve been trying to decide whether to get the iPod or the Zune. You went online and checked out Consumer Reports, and you found that although the players differed on many dimensions, including price, battery life, ability to share music, and so forth, the Zune was nevertheless rated significantly higher by the owners than was the iPod. As a result, you decide to go purchase one the next day. That night, however, you go to a party, and a friend of yours shows you her iPod. You check it out, and it seems really great. You tell her that you were thinking of buying a Zune, and she tells you that you are crazy. She says she knows someone who had one and had a lot of problems—it didn’t download music right, the battery went out right after it went out of warranty, and so forth—and that she would never buy one. Would you still buy the Zune, or would you switch your plans?

    If you think about this question logically, the information that you just got from your friend isn’t really all that important—you now know the opinions of one more person, but that can’t really change the overall consumer ratings of the two machines very much. On the other hand, the information your friend gives you and the chance to use her iPod is highly salient. The information is right there in front of you, in your hand, whereas the statistical information from Consumer Reports is only in the form of a table that you saw on your computer. The outcome in cases such as this is that people frequently ignore the less salient, but more important, information, such as the likelihood that events occur across a large population—these statistics are known as base rates — in favor of the actually less important, but nevertheless more salient, information.

    Another case in which we ignore base-rate information occurs when we use the representativeness heuristic (remember that heuristic refers to a simplifying strategy that we use to make judgments). The representativeness heuristic occurs when we base our judgments on information that seems to represent, or match, what we expect will happen while ignoring more informative base-rate information. Consider, for instance, the following puzzle. Let’s say that you went to a hospital, and you checked the records of the babies that were born today (Table 2.2 “Using the Representativeness Heuristic”). Which pattern of births do you think that you are most likely to find?

    Table 2.2 Using the Representativeness Heuristic

    List A List B
    6:31 a.m. Girl 6:31 a.m. Boy
    8:15 a.m. Girl 8:15 a.m. Girl
    9:42 a.m. Girl 9:42 a.m. Boy
    1:13 p.m. Girl 1:13 p.m. Girl
    3:39 p.m. Boy 3:39 p.m. Girl
    5:12 p.m. Boy 5:12 p.m. Boy
    7:42 p.m. Boy 7:42 p.m. Girl
    11:44 p.m. Boy 11:44 p.m. Boy

    Most people think that list B is more likely, probably because list B looks more random and thus matches (is “representative of”) our ideas about randomness. But statisticians know that any pattern of four girls and four boys is equally likely and thus that List B is no more likely than List A. The problem is that we have an image of what randomness should be, which doesn’t always match what is rationally the case. Similarly, people who see a coin that comes up heads five times in a row will frequently predict (and perhaps even bet!) that tails will be next—it just seems like it has to be. But mathematically, this erroneous expectation (known as the gambler’s fallacy) is simply not true: The base-rate likelihood of any single coin flip being tails is only 50%, regardless of how many times it has come up heads in the past.

    To take one more example, consider the following information:

    I have a friend who is short, shy and writes poetry. Which of the following is she? (Choose one.)

    1. A professor of psychology
    2. A professor of Chinese

    Can you see how you might be led, potentially incorrectly, into thinking that my friend is a professor of Chinese? Why? Because the description (“short, shy, and writes poetry”) just seems so representative or stereotypical of our expectations about Chinese people. But the base rates tell us something completely different, which might make us wary. For one, because I am a psychology professor, it’s much more likely that I know more psychology professors than Chinese professors. And at least on my campus, the number of professors in the psychology department is much bigger than the number of professors of Chinese. Although base rates suggest that “psychology” would be the right answer, the use of the representative heuristic might lead us (probably incorrectly) to guess “Chinese” instead.

    Cognitive Accessibility

    Although which characteristics we use to think about objects or people is determined in part by the salience of their characteristics (our perceptions are influenced by our social situation), individual differences in the person who is doing the judging are also important (our perceptions are influenced by person variables). People vary in the schemas that they find important to use when judging others and when thinking about themselves. One way to consider this importance is in terms of the cognitive accessibility of the schema. Cognitive accessibility refers to the extent to which a schema is activated in memory and thus likely to be used in information processing.

    You probably know people who are golf nuts (or maybe tennis or some other sports nuts). All they can talk about is golf. For them, we would say that golf is a highly accessible construct. Because they love golf, it is important to their self-concept; they set many of their goals in terms of the sport, and they tend to think about things and people in terms of it (“if he plays golf, he must be a good person!”). Other people have highly accessible schemas about eating healthy food, exercising, environmental issues, or really good coffee, for instance. In short, when a schema is accessible, we are likely to use it to make judgments of ourselves and others.

    Although accessibility can be considered a person variable (a given idea is more highly accessible for some people than for others), accessibility can also be influenced by situational factors. When we have recently or frequently thought about a given topic, that topic becomes more accessible and is likely to influence our judgments. This is, in fact, the explanation for the results of the priming study you read about earlier—people walked slower because the concept of the elderly had been primed and thus was currently highly accessible for them.

    Because we rely so heavily on our schemas and attitudes—and particularly on those that are salient and accessible—we can sometimes be overly influenced by them. Imagine, for instance, that I asked you to close your eyes and determine whether there are more words in the English language that begin with the letter R or that have the letter R as the third letter. You would probably try to solve this problem by thinking of words that have each of the characteristics. It turns out that most people think there are more words that begin with R, even though there are in fact more words that have R as the third letter.

    You can see that this error can occur as a result of cognitive accessibility. To answer the question, we naturally try to think of all the words that we know that begin with R and that have R in the third position. The problem is that when we do that, it is much easier to retrieve the former than the latter because we store words by their first, not by their third, letter. We may also think that our friends are nice people because we see them primarily when they are around us (their friends). And the traffic might seem worse in our own neighborhood than we think it is in other places, in part because nearby traffic jams are more accessible for us than are traffic jams that occur somewhere else. And do you think it is more likely that you will be killed in a plane crash or in a car crash? Many people fear the former, even though the latter is much more likely: Your chances of being involved in an aircraft accident are about 1 in 11 million, whereas your chances of being killed in an automobile accident are 1 in 5,000—over 50,000 people are killed on U.S. highways every year. In this case, the problem is that plane crashes, which are highly salient, are more easily retrieved from our memory than are car crashes, which are less extreme.

    The tendency to make judgments of the frequency of an event or the likelihood that an event will occur, on the basis of the ease with which the event can be retrieved from memory is known as the availability heuristic (Schwarz & Vaughn, 2002; Tversky & Kahneman, 1973). The idea is that things that are highly accessible (in this case, the term availability is used) come to mind easily and thus may overly influence our judgments. Thus, despite the clear facts, it may be easier to think of plane crashes than car crashes because the former are so highly salient. If so, the availability heuristic can lead to errors in judgments.

    Still another way that the cognitive accessibility of constructs can influence information processing is through their effects on processing fluency. Processing fluency refers to the ease with which we can process information in our environments. When stimuli are highly accessible, they can be quickly attended to and processed, and they, therefore, have a large influence on our perceptions. This influence is due, in part, to the fact that our body reacts positively to information that we can process quickly, and we use this positive response as a basis of judgment (Reber, Winkielman, & Schwarz, 1998; Winkielman & Cacioppo, 2001).

    In one study demonstrating this effect, Norbert Schwarz and his colleagues (Schwarz et al., 1991) asked one set of college students to list 6 occasions when they had acted either assertively or unassertively and asked another set of college students to list 12 such examples. Schwarz determined that for most students, it was pretty easy to list 6 examples but pretty hard to list 12.

    The researchers then asked the participants to indicate how assertive or unassertive they actually were. You can see from Figure 2.4 “Processing Fluency” that the ease of processing influenced judgments. The participants who had an easy time listing examples of their behavior (because they only had to list 6 instances) judged that they did in fact have the characteristics they were asked about (either assertive or unassertive), in comparison with the participants who had a harder time doing the task (because they had to list 12 instances). Other research has found similar effects—people rate that they ride their bicycles more often after they have been asked to recall only a few rather than many instances of doing so (Aarts & Dijksterhuis, 1999), and they hold an attitude with more confidence after being asked to generate few rather than many arguments that support it (Haddock, Rothman, Reber, & Schwarz, 1999).

    When it was relatively easy to complete the questionnaire (only 6 examples were required), the student participants rated that they had more of the trait than when the task was more difficult (12 answers were required). Data are from Schwarz et al. (1991).
    Figure 2.4 Processing Fluency

    When it was relatively easy to complete the questionnaire (only 6 examples were required), the student participants rated that they had more of the trait than when the task was more difficult (12 answers were required). Data are from Schwarz et al. (1991).

    We are likely to use this type of quick and “intuitive” processing, based on our feelings about how easy it is to complete a task when we don’t have much time or energy for more in-depth processing, such as when we are under time pressure, tired, or unwilling to process the stimulus in sufficient detail. Of course, it is very adaptive to respond to stimuli quickly (Sloman, 2002; Stanovich & West, 2002; Winkielman, Schwarz, & Nowak, 2002), and it is not impossible that in at least some cases, we are better off making decisions based on our initial responses than on a more thoughtful cognitive analysis (Loewenstein, Weber, Hsee, & Welch, 2001). For instance, Dijksterhuis, Bos, Nordgren, and van Baaren (2006) found that when participants were given tasks requiring decisions that were very difficult to make on the basis of cognitive analysis of the problem, they made better decisions when they didn’t try to analyze the details carefully but simply relied on their unconscious intuition.

    In sum, people are influenced not only by the information they get but by how they get it. We are more highly influenced by things that are salient and accessible and thus easily attended to, remembered, and processed. On the other hand, information that is harder to access from memory is less likely to be attended to, or takes more effort to consider is less likely to be used in our judgments, even if this information is statistically equally informative or even more informative.

    The False Consensus Bias Makes Us Think That We Are More Like Others Than We Really Are

    The tendency to base our judgments on the accessibility of social constructs can lead to still other errors in judgment. One such error is known as the false consensus bias: the tendency to overestimate the extent to which other people are similar to us. For instance, if you are in favor of abortion rights, opposed to gun control, and prefer rock music to jazz, then you are likely to think that other people share these beliefs (Ross, Greene, & House, 1977). In one demonstration of the false consensus bias, Joachim Krueger and his colleagues (Krueger & Clement, 1994) gave their research participants, who were college students, a personality test. Then they asked the same participants to estimate the percentage of other students in their school who would have answered the questions the same way that they did. The students who agreed with the items thought that others would agree with them too, whereas the students who disagreed thought that others would also disagree. You can see that the false consensus bias also occurs through the operation of cognitive accessibility: Once we have indicated our own belief, it becomes highly accessible, and it colors our estimates about other people.

    Although it is commonly observed, the false consensus bias does not occur in all dimensions. Specifically, the false consensus bias is not usually observed on judgments of positive personal traits that we highly value as important. People (falsely, of course) report that they have better personalities (e.g., a better sense of humor), that they engage in better behaviors (e.g., they are more likely to wear seat belts), and that they have brighter futures than almost everyone else (Chambers, 2008). These results suggest that although in most cases we assume that we are similar to others, in cases of valued personal characteristics the goals of self-concern lead us to see ourselves more positively than we see the average person.

    Perceptions of What “Might Have Been” Lead to Counterfactual Thinking

    In addition to influencing our judgments about ourselves and others, the salience and accessibility of information can have an important effect on our own emotions—for instance, our self-esteem. Our emotional reactions to events are often colored not only by what did happen but also by what might have happened. If we can easily imagine an outcome that is better than what actually happened, then we may experience sadness and disappointment; on the other hand, if we can easily imagine that a result might have been worse than what actually happened, we may be more likely to experience happiness and satisfaction. The tendency to think about events according to what might have been known as counterfactual thinking (Roese, 1997).

    Imagine, for instance, that you were participating in an important contest, and you won the silver medal. How would you feel? Certainly, you would be happy that you won, but wouldn’t you probably also be thinking a lot about what might have happened if you had been just a little bit better—you might have won the gold medal! On the other hand, how might you feel if you won the bronze medal (third place)? If you were thinking about the counterfactual (the “what might have been”), perhaps the idea of not getting any medal at all would have been highly accessible—you’d be happy that you got the medal you did get.

    Medvec, Madey, and Gilovich (1995) investigated exactly this idea by videotaping the responses of athletes who won medals in the 1992 summer Olympic Games. They videotaped the athletes both as they learned that they had won a silver or a bronze medal and again as they were awarded the medal. Then they showed these videos, without any sound, to people who did not know which medal which athlete had won. The raters indicated how they thought the athlete was feeling, on a range from “agony” to “ecstasy.” The results showed that the bronze medalists did indeed seem to be, on average, happier than were the silver medalists. Then in a follow-up study, raters watched interviews with many of these same athletes as they talked about their performance. The raters indicated what we would expect on the basis of counterfactual thinking—the silver medalists talked about their disappointments in having finished second rather than first, whereas the bronze medalists focused on how happy they were to have finished third rather than fourth.

    Does the bronze medalist look happier to you than the silver medalist?
    Does the bronze medalist look happier to you than the silver medalist? Medvec, Madey, and Gilovich (1995) found that, on average, bronze medalists were happier than silver medalists. Wikimedia Commons – CC BY-SA 2.0.

    You might have experienced counterfactual thinking in other situations. I remember once that I was driving across the country and my car was having some engine trouble. I really, really wanted to make it home when I got near the end of my journey because I could tell that I was going to be very disappointed if the car broke down only a few miles before I got home (it would have been really easy to have imagined making it the whole way, making it even more painful if I did not). Counterfactual thinking has even been observed on juries—people who are asked to award monetary damages to others who had been in an accident offered them substantially more in compensation if they were almost not injured than they did if the accident did not seem close to not occurring (Miller, Turnbull, & McFarland, 1988).

    Again, the moral of the story is clear—our thinking is frequently influenced by processes that we are not aware of and that may lead us to make judgments that seem reasonable but are objectively inaccurate. In the case of counterfactual thinking, the cognitive accessibility of the potential alternative outcome leads to some very paradoxical effects.

    Anchoring and Adjustment Lead Us to Accept Ideas That We Should Revise

    In some cases, we may be aware of the danger of acting on our expectations and attempt to adjust for them. Perhaps you have been in a situation where you are beginning a course with a new professor and you know that a good friend of yours does not like him. You may be thinking that you want to go beyond your negative expectations and prevent this knowledge from biasing your judgment. However, the accessibility of the initial information frequently prevents this adjustment from occurring—leading us to anchor on the initial construct and not adjust sufficiently. This is called the problem of anchoring and adjustment.

    Tversky and Kahneman (1974) asked some of the student participants in one of their studies to solve this multiplication problem quickly and without using a calculator:

    1 × 2 × 3 × 4 × 5 × 6 × 7 × 8

    They asked other participants to solve this problem:

    8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

    They found that students who saw the first problem gave an estimated answer of about 512, whereas the students who saw the second problem estimated about 2,250. Tversky and Kahneman argued that the students couldn’t solve the whole problem in their head, so they did the first few multiplications and then used the outcome of this preliminary calculation as their starting point, or anchor. Then the participants used their starting estimate to find an answer that sounded plausible. In both cases, the estimates were too low relative to the true value of the product (which is 40,320)—but the first set of guesses was even lower because they started from a lower anchor.

    Of course, savvy marketers have long used the anchoring phenomenon to help them. You might not be surprised to hear that people are more likely to buy more products when they are listed as four for $1.00 than when they are listed as $0.25 each (leading people to anchor on the four and perhaps adjust only a bit away) and when a sign says “buy a dozen” rather than “buy one.”

    And it is no accident that a car salesperson always starts negotiating with a high price and then works down. The salesperson is trying to get the consumer anchored on the high price with the hope that it will have a big influence on the final sale value.

    Overconfidence

    Still another potential judgmental bias, and one that has powerful and often negative effects on our judgments, is the tendency to be overconfident in our own skills, abilities, and judgments. We often have little awareness of our own limitations, leading us to act as if we are more certain about things than we should be, particularly on tasks that are difficult. Adams and Adams (1960) found that for words that were difficult to spell, people were correct in spelling them only about 80% of the time, even though they indicated that they were “100% certain” that they were correct. David Dunning and his colleagues (Dunning, Griffin, Milojkovic, & Ross, 1990) asked college students to predict how another student would react in various situations. Some participants made predictions about a fellow student whom they had just met and interviewed, and others made predictions about their roommates. In both cases, participants reported their confidence in each prediction, and accuracy was determined by the responses of the target persons themselves. The results were clear: Regardless of whether they judged a stranger or a roommate, the students consistently overestimated the accuracy of their own predictions (Figure 2.5).

    Dunning et al.(1990) found that, regardless of whether they were judging strangers or their roommates, students were overconfident. The percentage confidence that they assigned to their own predictions was significantly higher than the actual percentage of their predictions that were correct.
    Figure 2.5

    Dunning et al. (1990) found that, regardless of whether they were judging strangers or their roommates, students were overconfident. The percentage confidence that they assigned to their own predictions was significantly higher than the actual percentage of their predictions that were correct.

    Making matters even worse, Kruger and Dunning (1999) found that people who scored low rather than high on tests of spelling, logic, grammar, and humor appreciation were also most likely to show overconfidence by overestimating how well they would do. Apparently, poor performers are doubly cursed—they not only are unable to predict their own skills but also are the most unaware that they can’t do so (Dunning, Johnson, Ehrlinger, & Kruger, 2003).

    The tendency to be overconfident in our judgments can have some very negative effects. When eyewitnesses testify in courtrooms regarding their memories of a crime, they often are completely sure that they are identifying the right person. But their confidence doesn’t correlate much with their actual accuracy. This is, in part, why so many people have been wrongfully convicted on the basis of inaccurate eyewitness testimony given by overconfident witnesses (Wells & Olson, 2003).

    The Importance of Cognitive Biases in Everyday Life

    Perhaps you are thinking that the use of heuristics and the tendency to be influenced by salience and accessibility don’t seem that important—who really cares if we buy an iPod when the Zune is better, or if we think there are more words that begin with the letter R than there actually are? These aren’t big problems in the overall scheme of things. But it turns out that what seems perhaps to be pretty small errors and biases on the surface can have profound consequences for people.

    For one, if the errors occur for a lot of people, they can really add up. Why would so many people continue to buy lottery tickets or to gamble their money in casinos when the likelihood of them ever winning is so low? One possibility, of course, is the representative heuristic—people ignore the low base rates of winning and focus their attention on the salient likelihood of winning a huge prize. And the belief in astrology, which all scientific evidence suggests is not accurate, is probably driven in part by the salience of the occasions when the predictions do occur—when a horoscope is correct (which it will, of course, be sometimes), the correct prediction is highly salient and may allow people to maintain the (overall false) belief.

    People may also take more care to prepare for unlikely events than for more likely ones because the unlikely ones are more salient or accessible. For instance, people may think that they are more likely to die from a terrorist attack or as a result of homicide than they are from diabetes, stroke, or tuberculosis. But the odds are much greater of dying from the health problems than from terrorism or homicide. Because people don’t accurately calibrate their behaviors to match the true potential risks, the individual and societal costs are quite large (Slovic, 2000).

    Salience and accessibility also color how we perceive our social worlds, which may have a big influence on our behavior. For instance, people who watch a lot of violent television shows also tend to view the world as more dangerous in comparison to those who watch less violent TV (Doob & Macdonald, 1979). This follows from the idea that our judgments are based on the accessibility of relevant constructs. We also overestimate our contribution to joint projects (Ross & Sicoly, 1979), perhaps in part because our own contributions are so obvious and salient, whereas the contributions of others are much less so. And the use of cognitive heuristics can even affect our views about global warming. Joireman, Barnes, Truelove, and Duell (2010) found that people were more likely to believe in the existence of global warming when they were asked about it on hotter rather than colder days and when they had first been primed with words relating to heat. Thus the principles of salience and accessibility, because they are such an important part of our social judgments, can create a series of biases that can make a difference.

    Research has found that even people who should know better—and who need to know better—are subject to cognitive biases. Economists, stock traders, managers, lawyers, and even doctors have been found to make the same kinds of mistakes in their professional activities that people make in their everyday lives (Byrne & McEleney, 2000; Gilovich, Griffin, & Kahneman, 2002; Hilton, 2001). And the use of cognitive heuristics is increased when people are under time pressure (Kruglanski & Freund, 1983) or when they feel threatened (Kassam, Koslov, & Mendes, 2009), exactly the situations that may occur when professionals are required to make their decisions.

    Although biases are common, they are not impossible to control, and psychologists and other scientists are working to help people make better decisions. One possibility is to provide people with better feedback. Weather forecasters, for instance, are quite accurate in their decisions, in part because they are able to learn from the clear feedback that they get about the accuracy of their predictions. Other research has found that accessibility biases can be reduced by leading people to consider multiple alternatives rather than focusing only on the most obvious ones, and particularly by leading people to think about exactly the opposite possible outcomes than the ones they are expecting (Hirt, Kardes, & Markman, 2004). And people can also be trained to make better decisions. For instance, Lehman, Lempert, and Nisbett (1988) found that graduate students in medicine, law, and chemistry, but particularly those in psychology, all showed significant improvement in their ability to reason correctly over the course of their graduate training.

    Social Psychology in the Public Interest

    The Validity of Eyewitness Testimony

  • >As we have seen in the story of Rickie Johnson that opens this chapter, one social situation in which the accuracy of our person-perception skills is vitally important in the area of eyewitness testimony (Charman & Wells, 2007; Toglia, Read, Ross, & Lindsay, 2007; Wells, Memon, & Penrod, 2006). Every year, thousands of individuals such as Rickie Johnson are charged with and often convicted of crimes based largely on eyewitness evidence. In fact, more than 100 people who were convicted prior to the existence of forensic DNA have now been exonerated by DNA tests, and more than 75% of these people were victims of mistaken eyewitness identification (Wells, Memon, & Penrod, 2006; Fisher, 2011).

  • >The judgments of eyewitnesses are often incorrect, and there is only a small correlation between how accurate and how confident an eyewitness is. Witnesses are frequently overconfident, and one who claims to be absolutely certain about his or her identification is not much more likely to be accurate than one who appears much less sure, making it almost impossible to determine whether a particular witness is accurate or not (Wells & Olson, 2003).

  • >To accurately remember a person or an event at a later time, we must be able to accurately see and store the information in the first place, keep it in memory over time, and then accurately retrieve it later. But the social situation can influence any of these processes, causing errors and biases.

  • >In terms of initial encoding of the memory, crimes normally occur quickly, often in situations that are accompanied by a lot of stress, distraction, and arousal. Typically, the eyewitness gets only a brief glimpse of the person committing the crime, and this may be under poor lighting conditions and from far away. And the eyewitness may not always focus on the most important aspects of the scene. Weapons are highly salient, and if a weapon is present during the crime, the eyewitness may focus on the weapon, which would draw his or her attention away from the individual committing the crime (Steblay, 1997). In one relevant study, Loftus, Loftus, and Messo (1987) showed people slides of a customer walking up to a bank teller and pulling out either a pistol or a checkbook. By tracking eye movements, the researchers determined that people were more likely to look at the gun than at the checkbook and that this reduced their ability to accurately identify the criminal in a lineup that was given later.

  • >People may be particularly inaccurate when they are asked to identify members of a race other than their own (Brigham, Bennett, Meissner, & Mitchell, 2007). In one field study, for example, Meissner and Brigham (2001) sent White, Black, and Hispanic students into convenience stores in El Paso, Texas. Each of the students made a purchase, and the researchers came in later to ask the clerks to identify photos of the shoppers. Results showed that the White, Black, and Mexican American clerks demonstrated the own-race bias: They were all more accurate at identifying customers belonging to their own racial or ethnic group than they were at identifying people from other groups. There seems to be some truth to the adage that “They all look alike”—at least if an individual is looking at someone who is not of his or her race.
    Collage: three sisters posing for a picture, two sisters hugging, two brothers at Christmas
    One source of error in eyewitness testimony is the relative difficulty of accurately identifying people who are not of one’s own race. Kira Westland – sisters – CC BY-NC-ND 2.0; Dillan K – Sisters – CC BY-NC-ND 2.0; Bill Lile – Robertos Brothers – CC BY-NC-ND 2.0.
  • >Even if information gets encoded properly, memories may become distorted over time. For one thing, people might discuss what they saw with other people, or they might read the information relating to it from other bystanders or in the media. Such postevent information can distort the original memories such that the witnesses are no longer sure what the real information is and what was provided later. The problem is that the new, inaccurate information is highly cognitively accessible, whereas the older information is much less so. Even describing a face makes it more difficult to recognize the face later (Dodson, Johnson, & Schooler, 1997).

  • >In an experiment by Loftus and Palmer (1974), participants viewed a film of a traffic accident and then, according to random assignment to experimental conditions, answered one of three questions:
    1. “About how fast were the cars going when they hit each other?”
    2. “About how fast were the cars going when they smashed each other?”
    3. “About how fast were the cars going when they contacted each other?”

  • >As you can see in the following figure, although all the participants saw the same accident, their estimates of the speed of the cars varied by condition. People who had seen the “smashed” question estimated the highest average speed, and those who had seen the “contacted” question estimated the lowest.
    Participants viewed a film of a traffic accident and then answered a question about the accident. According to random assignment, the blank was filled by either “hit,” “smashed,” or “contacted” each other. The wording of the question influenced the participants’ memory of the accident. Data are from Loftus and Palmer (1974).
    Figure 2.6 Reconstructive Memory

    Participants viewed a film of a traffic accident and then answered a question about the accident. According to random assignment, the blank was filled by either “hit,” “smashed,” or “contacted” each other. The wording of the question influenced the participants’ memory of the accident. Data are from Loftus and Palmer (1974).

  • >The situation is particularly problematic when the eyewitnesses are children because research has found that children are more likely to make incorrect identifications than are adults (Pozzulo & Lindsay, 1998) and are also subject to the own-race identification bias (Pezdek, Blandon-Gitlin, & Moore, 2003). In many cases, when sex abuse charges have been filed against babysitters, teachers, religious officials, and family members, the children are the only source of evidence. The likelihood that children are not accurately remembering the events that have occurred to them creates substantial problems for the legal system.

  • >Another setting in which eyewitnesses may be inaccurate is when they try to identify suspects from mug shots or lineups. A lineup generally includes the suspect and five to seven other innocent people (the fillers), and the eyewitness must pick out the true perpetrator. The problem is that eyewitnesses typically feel pressured to pick a suspect out of the lineup, which increases the likelihood that they will mistakenly pick someone (rather than no one) as the suspect.

  • >Research has attempted to better understand how people remember and potentially misremember the scenes of and people involved in crimes and to attempt to improve how the legal system makes use of eyewitness testimony. In many states, efforts are being made to better inform judges, juries, and lawyers about how inaccurate eyewitness testimony can be. Guidelines have also been proposed to help ensure those child witnesses are questioned in a nonbiased way (Poole & Lamb, 1998). Steps can also be taken to ensure that lineups yield more accurate eyewitness identifications. Lineups are fairer when the fillers resemble the suspect when the interviewer makes it clear that the suspect might or might not be present (Steblay, Dysart, Fulero, & Lindsay, 2001), and when the eyewitness has not been shown the same pictures in a mug-shot book prior to the lineup decision. And several recent studies have found that witnesses who make accurate identifications from a lineup reach their decision faster than do witnesses who make mistaken identifications, suggesting that authorities must take into consideration not only the response but how fast it is given (Dunning & Perretta, 2002).

  • >In addition to distorting our memories for events that have actually occurred, misinformation may lead us to falsely remember information that never occurred. Loftus and her colleagues asked parents to provide them with descriptions of events that did (e.g., moving to a new house) and did not (e.g., being lost in a shopping mall) happen to their children. Then (without telling the children which events were real or made-up) the researchers asked the children to imagine both types of events. The children were instructed to “think real hard” about whether the events had occurred (Ceci, Huffman, Smith, & Loftus, 1994). More than half of the children generated stories regarding at least one of the made-up events, and they remained insistent that the events did in fact occur even when told by the researcher that they could not possibly have occurred (Loftus & Pickrell, 1995). Even college students are susceptible to manipulations that make events that did not actually occur seem as if they did (Mazzoni, Loftus, & Kirsch, 2001).

  • >The ease with which memories can be created or implanted is particularly problematic when the events to be recalled have important consequences. Therapists often argue that patients may repress memories of traumatic events they experienced as children, such as childhood sexual abuse, and then recover the events years later as the therapist leads them to recall the information—for instance, by using dream interpretation and hypnosis (Brown, Scheflin, & Hammond, 1998).

  • >But other researchers argue that painful memories such as sexual abuse are usually very well remembered, that few memories are actually repressed and that even if they are, it is virtually impossible for patients to accurately retrieve them years later (McNally, Bryant, & Ehlers, 2003; Pope, Poliakoff, Parker, Boynes, & Hudson, 2007). These researchers have argued that the procedures used by the therapists to “retrieve” the memories are more likely to actually implant false memories, leading the patients to erroneously recall events that did not actually occur. Because hundreds of people have been accused, and even imprisoned, on the basis of claims about “recovered memory” of child sexual abuse, the accuracy of these memories has important societal implications. Many psychologists now believe that most of these claims of recovered memories are due to implanted, rather than real, memories (Loftus & Ketcham, 1994).

  • >Taken together, then, the problems of eyewitness testimony represent another example of how social cognition—the processes that we use to size up and remember other people—may be influenced, sometimes in a way that creates inaccurate perceptions, by the operation of salience, cognitive accessibility, and other information-processing biases.

    End-of-Chapter Summary

    Key Takeaways

    • We use our schemas and attitudes to help us judge and respond to others. In many cases, this is appropriate, but our expectations can also lead to biases in our judgments of ourselves and others.
    • A good part of our social cognition is spontaneous or automatic, operating without much thought or effort. On the other hand, when we have the time and the motivation to think about things carefully, we may engage in thoughtful, controlled cognition.
    • Which expectations we use to judge others are based on both the situational salience of the things we are judging and the cognitive accessibility of our own schemas and attitudes.
    • Variations in the accessibility of schemas lead to biases such as the availability heuristic, the representativeness heuristic, the false consensus bias, and biases caused by counterfactual thinking.
    • The potential biases that are the result of everyday social cognition can have important consequences, both for us in our everyday lives but even for people who make important decisions affecting many other people. Although biases are common, they are not impossible to control, and psychologists and other scientists are working to help people make better decisions.
    • The operation of cognitive biases, including the potential for new information to distort information already in memory, can help explain the tendency for eyewitnesses to be overconfident and frequently inaccurate in their recollections of what occurred at crime scenes.

    Exercises & Critical Thinking

    1. Give an example of a time when you may have committed one of the cognitive errors listed in Table 2.1 “How Expectations Influence Our Social Cognition”. What factors (e.g., availability? salience?) caused the error, and what was the outcome of your use of the shortcut or heuristic?
    2. Go to the website http://thehothand.blogspot.com, which analyzes the extent to which people accurately perceive “streakiness” in sports. Consider how our sports perceptions are influenced by our expectations and the use of cognitive heuristics.

    References

    Aarts, H., & Dijksterhuis, A. (1999). How often did I do it? Experienced ease of retrieval and frequency estimates of past behavior. Acta Psychologica, 103(1–2), 77–89.

    Adams, P. A., & Adams, J. K. (1960). Confidence in the recognition and reproduction of words difficult to spell. American Journal of Psychology, 73, 544–552.

    Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology, 71(2), 230–244.

    Brewer, M. B. (1988). A dual-process model of impression formation. In T. K. Srull & R. S. Wyer (Eds.), Advances in social cognition (Vol. 1, pp. 1–36). Hillsdale, NJ: Erlbaum.

    Brigham, J. C., Bennett, L. B., Meissner, C. A., & Mitchell, T. L. (Eds.). (2007). The influence of race on eyewitness memory. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Memory, trauma treatment, and the law. New York, NY: Norton.

    Byrne, R. M. J., & McEleney, A. (2000). Counterfactual thinking about actions and failures to act. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1318–1331.

    Ceci, S. J., Huffman, M. L. C., Smith, E., & Loftus, E. F. (1994). Repeatedly thinking about a non-event: Source misattributions among preschoolers. Consciousness and Cognition: An International Journal, 3(3–4), 388–407.

    Chambers, J. R. (2008). Explaining false uniqueness: Why we are both better and worse than others. Social and Personality Psychology Compass, 2(2), 878–894.

    Charman, S. D., & Wells, G. L. (2007). Eyewitness lineups: Is appearance-changes instruction a good idea? Law and Human Behavior, 31(1), 3–22.

    Dijksterhuis, A., Bos, M. W., Nordgren, L. F., & van Baaren, R. B. (2006). On making the right choice: The deliberation-without-attention effect. Science, 311(5763), 1005–1007.

    Dodson, C. S., Johnson, M. K., & Schooler, J. W. (1997). The verbal overshadowing effect: Why descriptions impair face recognition. Memory & Cognition, 25(2), 129–139.

    Doob, A. N., & Macdonald, G. E. (1979). Television viewing and fear of victimization: Is the relationship causal? Journal of Personality and Social Psychology, 37(2), 170–179.

    Dunning, D., Griffin, D. W., Milojkovic, J. D., & Ross, L. (1990). The overconfidence effect in social prediction. Journal of Personality and Social Psychology, 58(4), 568–581.

    Dunning, D., Johnson, K., Ehrlinger, J., & Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12(3), 83–87.

    Dunning, D., & Perretta, S. (2002). Automaticity and eyewitness accuracy: A 10- to 12-second rule for distinguishing accurate from inaccurate positive identifications. Journal of Applied Psychology, 87(5), 951–962.

    Ferguson, M. J., & Bargh, J. A. (2003). The constructive nature of automatic evaluation. In J. Musch & K. C. Klauer (Eds.), The psychology of evaluation: Affective processes in cognition and emotion (pp. 169–188). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Ferguson, M. J., Hassin, R., & Bargh, J. A. (2008). Implicit motivation: Past, present, and future. In J. Y. Shah & W. L. Gardner (Eds.), Handbook of motivation science (pp. 150–166). New York, NY: Guilford Press.

    Fisher, R. P. (2011). Editor’s introduction: Special issue on psychology and law. Current Directions in Psychological Science, 20, 4. doi:10.1177/0963721410397654

    Gilovich, T., Griffin, D., & Kahneman, D. (Eds.). (2002). Heuristics and biases: The psychology of intuitive judgment. New York, NY: Cambridge University Press.

    Haddock, G., Rothman, A. J., Reber, R., & Schwarz, N. (1999). Forming judgments of attitude certainty, intensity, and importance: The role of subjective experiences. Personality and Social Psychology Bulletin, 25, 771–782.

    Hilton, D. J. (2001). The psychology of financial decision-making: Applications to trading, dealing, and investment analysis. Journal of Behavioral Finance, 2, 37–53. doi: 10.1207/S15327760JPFM0201_4

    Hirt, E. R., Kardes, F. R., & Markman, K. D. (2004). Activating a mental simulation mind-set through generation of alternatives: Implications for debiasing in related and unrelated domains. Journal of Experimental Social Psychology, 40(3), 374–383.

    Joireman, J., Barnes Truelove, H., & Duell, B. (2010). Effect of outdoor temperature, heat primes and anchoring on belief in global warming. Journal of Environmental Psychology, 30(4), 358–367.

    Kassam, K. S., Koslov, K., & Mendes, W. B. (2009). Decisions under distress: Stress profiles influence anchoring and adjustment. Psychological Science, 20(11), 1394–1399.

    Krueger, J., & Clement, R. W. (1994). The truly false consensus effect: An ineradicable and egocentric bias in social perception. Journal of Personality and Social Psychology, 67(4), 596–610.

    Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134.

    Kruglanski, A. W., & Freund, T. (1983). The freezing and unfreezing of lay inferences: Effects on impressional primacy, ethnic stereotyping, and numerical anchoring. Journal of Experimental Social Psychology, 19, 448–468.

    Lehman, D. R., Lempert, R. O., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday-life events. American Psychologist, 43(6), 431–442.

    Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267–286.

    Loftus, E. F., & Ketcham, K. (1994). The myth of repressed memory: False memories and allegations of sexual abuse (1st ed.). New York, NY: St. Martin’s Press.

    Loftus, E. F., Loftus, G. R., & Messo, J. (1987). Some facts about “weapon focus.” Law and Human Behavior, 11(1), 55–62.

    Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning & Verbal Behavior, 13(5), 585–589.

    Psychiatric Annals, 25(12), 720–725.

    Mazzoni, G. A. L., Loftus, E. F., & Kirsch, I. (2001). Changing beliefs about implausible autobiographical events: A little plausibility goes a long way. Journal of Experimental Psychology: Applied, 7(1), 51–59.

    McArthur, L. Z., & Post, D. L. (1977). Figural emphasis and person perception. Journal of Experimental Social Psychology, 13(6), 520–535.

    McNally, R.J., Bryant, R. A., & Ehlers, A. (2003). Does early psychological intervention promote recovery from posttraumatic stress? Psychological Science in the Public Interest, 4(2), 45-79.

    Medvec, V. H., Madey, S. F., & Gilovich, T. (1995). When less is more: Counterfactual thinking and satisfaction among Olympic medalists. Journal of Personality and Social Psychology, 69(4), 603–610.

    Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-race bias in memory for faces: A meta-analytic review. Psychology, Public Policy, and Law, 7(1), 3–35.

    Miller, D. T., Turnbull, W., & McFarland, C. (1988). Particularistic and universalistic evaluation in the social comparison process. Journal of Personality and Social Psychology, 55, 908–917.

    Pezdek, K., Blandon-Gitlin, I., & Moore, C. (2003). Children’s face recognition memory: More evidence for the cross-race effect. Journal of Applied Psychology, 88(4), 760–763.

    Poole, D. A., & Lamb, M. E. (1998). The development of interview protocols. Washington, DC: American Psychological Association.

    Pope, H. G., Jr., Poliakoff, M. B., Parker, M. P., Boynes, M., & Hudson, J. I. (2007). Is dissociative amnesia a culture-bound syndrome? Findings from a survey of historical literature. Psychological Medicine: A Journal of Research in Psychiatry and the Allied Sciences, 37(2), 225–233.

    Pozzulo, J. D., & Lindsay, R. C. L. (1998). Identification accuracy of children versus adults: A meta-analysis. Law and Human Behavior, 22(5), 549–570.

    Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science, 9(1), 45–48. Winkielman, P., & Cacioppo, J. T. (2001). Mind at ease puts a smile on the face: Psychophysiological evidence that processing facilitation elicits positive affect. Journal of Personality and Social Psychology, 81(6), 989–1000.

    Psychological Bulletin, 121(1), 133–148.

    Ross, L., Greene, D., & House, P. (1977). The false consensus effect: An egocentric bias in social perception and attribution processes. Journal of Experimental Social Psychology, 13(3), 279–301.

    Ross, M., & Sicoly, F. (1979). Egocentric biases in availability and attribution. Journal of Personality and Social Psychology, 37(3), 322–336.

    Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61, 195–202.

    Schwarz, N., & Vaughn, L. A. (Eds.). (2002). The availability heuristic revisited: Ease of recall and content of recall as distinct sources of information. New York, NY: Cambridge University Press.

    Two systems of reasoning. New York, NY: Cambridge University Press.

    The perception of risk. London, England: Earthscan Publications.

    Stanovich, K. E., & West, R. F. (Eds.). (2002). Individual differences in reasoning: Implications for the rationality debate? New York, NY: Cambridge University Press.

    Steblay, N., Dysart, J., Fulero, S., & Lindsay, R. C. L. (2001). Eyewitness accuracy rates in sequential and simultaneous lineup presentations: A meta-analytic comparison. Law and Human Behavior, 25(5), 459–473.

    Steblay, N. M. (1997). Social influence in eyewitness recall: A meta-analytic review of lineup instruction effects. Law and Human Behavior, 21(3), 283–297.

    Taylor, S. E., & Fiske, S. T. (1978). Salience, attention and attribution: Top of the head phenomena. Advances in Experimental Social Psychology, 11, 249–288.

    Toglia, M. P., Read, J. D., Ross, D. F., & Lindsay, R. C. L. (Eds.). (2007). The handbook of eyewitness psychology (Vols. 1 & 2). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232.

    Science, 185(4157), 1124–1131.

    Wells, G. L., Memon, A., & Penrod, S. D. (2006). Eyewitness evidence: Improving its probative value. Psychological Science in the Public Interest, 7(2), 45–75.

    Annual Review of Psychology, 54, 277–295.

    Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-Ms exposure to a face. Psychological Science, 17(7), 592–598.

    Winkielman, P., Schwarz, N., & Nowak, A. (Eds.). (2002). Affect and processing dynamics: Perceptual fluency enhances evaluations. Amsterdam, Netherlands: John Benjamins Publishing Company.


  • This page titled 1.1: Chapter 1- How We Use Our Expectations is shared under a not declared license and was authored, remixed, and/or curated by Susan C. Tyler.

    • Was this article helpful?