Skip to main content
Social Sci LibreTexts

4.6: The Biochemistry of Love

  • Page ID
    210791
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    4.6: The Biochemistry of Love

    Love is deeply biological. It pervades every aspect of our lives and has inspired countless works of art. Love also has a profound effect on our mental and physical state. A “broken heart” or a failed relationship can have disastrous effects; bereavement disrupts human physiology and may even precipitate death. Without loving relationships, humans fail to flourish, even if all of their other basic needs are met. As such, love is clearly not “just” an emotion; it is a biological process that is both dynamic and bidirectional in several dimensions. Social interactions between individuals, for example, trigger cognitive and physiological processes that influence emotional and mental states. In turn, these changes influence future social interactions. Similarly, the maintenance of loving relationships requires constant feedback through sensory and cognitive systems; the body seeks love and responds constantly to interactions with loved ones or to the absence of such interactions. The evolutionary principles and ancient hormonal and neural systems that support the beneficial and healing effects of loving relationships are described here.

    Introduction to the Study of Love

    4-6 stick figure drawing with heart .png

    "Love Cartoon" by laradanielle is licensed under CC BY-ND 2.0.

    Although evidence exists for the healing power of love, only recently has science turned its attention to providing a physiological explanation for love. The study of love in this context offers insight into many important topics, including the biological basis of interpersonal relationships and why and how disruptions in social bonds have such pervasive consequences for behavior and physiology. Some of the answers will be found in our growing knowledge of the neurobiological and endocrinological mechanisms of social behavior and interpersonal engagement.

    The evolution of social behavior

    Nothing in biology makes sense except in the light of evolution. Life on earth is fundamentally social: The ability to dynamically interact with other living organisms to support mutual homeostasis, growth, and reproduction evolved very early. Social interactions are present in primitive invertebrates and even among prokaryotes: Bacteria recognize and approach members of their own species. Bacteria also reproduce more successfully in the presence of their own kind and are able to form communities with physical and chemical characteristics that go far beyond the capabilities of the individual cell (Ingham & Ben-Jacob, 2008).

    The evolutionary pathways that led from reptiles to mammals allowed the emergence of the unique anatomical systems and biochemical mechanisms that enable social engagement and selectively reciprocal sociality. Reptiles show minimal parental investment in offspring and form nonselective relationships between individuals. Pet owners may become emotionally attached to their turtle or snake, but this relationship is not reciprocal. In contrast, most mammals show intense parental investment in offspring and form lasting bonds with their children. Many mammalian species—including humans, wolves, and prairie voles—also develop long-lasting, reciprocal, and selective relationships between adults, with several features of what humans experience as “love.” In turn, these reciprocal interactions trigger dynamic feedback mechanisms that foster growth and health.

    What is love? An evolutionary and physiological perspective

    Human love is more complex than simple feedback mechanisms. Love may create its own reality. The biology of love originates in the primitive parts of the brain—the emotional core of the human nervous system—which evolved long before the cerebral cortex. The brain “in love” is flooded with vague sensations, often transmitted by the vagus nerve, and creating much of what we experience as emotion. The modern cortex struggles to interpret love’s messages, and weaves a narrative around incoming visceral experiences, potentially reacting to that narrative rather than to reality. It also is helpful to realize that mammalian social behavior is supported by biological components that were repurposed or co-opted over the course of mammalian evolution, eventually permitting lasting relationships between adults.

    Stress and love

    Emotional bonds can form during periods of extreme duress, especially when the survival of one individual depends on the presence and support of another. There also is evidence that oxytocin is released in response to acutely stressful experiences, perhaps serving as hormonal “insurance” against overwhelming stress. Oxytocin may help to ensure that parents and others will engage with and care for infants; develop stable, loving relationships; and seek out and receive support from others in times of need.

    The absence of love in early life can be detrimental to mental and physical health

    During early life in particular, trauma or neglect may produce behaviors and emotional states in humans that are socially pathological. Because the processes involved in creating social behaviors and social emotions are delicately balanced, these be may be triggered in inappropriate contexts, leading to aggression toward friends or family. Alternatively, bonds may be formed with prospective partners who fail to provide social support or protection.

    4-6 children kissing .png

    "Really Young Love " by makelessnoise is licensed under CC BY 2.0.

    Loving relationships in early life can have epigenetic consequences

    Love is “epigenetic.” That is, positive experiences in early life can act upon and alter the expression of specific genes. These changes in gene expression may have behavioral consequences through simple biochemical changes, such as adding a methyl group to a particular site within the genome (Zhang & Meaney, 2010). It is possible that these changes in the genome may even be passed to the next generation.

    Although we are all born with a finite set of genes, experiences in childhood will cause some genes to express themselves (e.g., encourage certain personality traits), while other genes will remain dormant.

    Social behaviors, emotional attachment to others, and long-lasting reciprocal relationships also are both plastic and adaptive, and so is the biology upon which they are based. For example, infants of traumatized or highly stressed parents might be chronically exposed to vasopressin, either through their own increased production of the peptide, or through higher levels of vasopressin in maternal milk. Such increased exposure could sensitize the infant to defensive behaviors or create a lifelong tendency to overreact to threat. Based on research in rats, it seems that in response to adverse early experiences of chronic isolation, the genes for vasopressin receptors can become upregulated (Zhang et al., 2012), leading to an increased sensitivity to acute stressors or anxiety that may persist throughout life.

    Epigenetic programming triggered by early life experiences is adaptive in allowing neuroendocrine systems to project and plan for future behavioral demands. But epigenetic changes that are long-lasting also can create atypical social or emotional behaviors (Zhang & Meaney, 2010) that may be especially likely to surface in later life, and in the face of social or emotional challenges.

    Exposure to exogenous hormones in early life also may be epigenetic. For example, prairie voles treated postnatally with vasopressin (especially males) were later more aggressive, whereas those exposed to a vasopressin antagonist showed less aggression in adulthood. Conversely, in voles the exposure of infants to slightly increased levels of oxytocin during development increased the tendency to show a pair bond. However, these studies also showed that a single exposure to a higher level of oxytocin in early life could disrupt the later capacity to pair bond (Carter et al., 2009).

    There is little doubt that either early social experiences or the effects of developmental exposure to these neuropeptides holds the potential to have long-lasting effects on behavior. Both parental care and exposure to oxytocin in early life can permanently modify hormonal systems, altering the capacity to form relationships and influence the expression of love across the life span. Our preliminary findings in voles further suggest that early life experiences affect the methylation of the oxytocin receptor gene and its expression (Connelly, Kenkel, Erickson, & Carter, 2011). Thus, we can plausibly argue that love is epigenetic.

    The absence of social behavior or isolation also has consequences for the oxytocin system

    Given the power of positive social experiences, it is not surprising that a lack of social relationships also may lead to alterations in behavior as well as changes in oxytocin and vasopressin pathways. We have found that social isolation reduced the expression of the gene for the oxytocin receptor, and at the same time increased the expression of genes for the vasopressin peptide. In female prairie voles, isolation also was accompanied by an increase in blood levels of oxytocin, possibly as a coping mechanism. However, over time, isolated prairie voles of both sexes showed increases in measures of depression, anxiety, and physiological arousal, and these changes were observed even when endogenous oxytocin was elevated. Thus, even the hormonal insurance provided by endogenous oxytocin in face of the chronic stress of isolation was not sufficient to dampen the consequences of living alone. Predictably, when isolated voles were given additional exogenous oxytocin, this treatment did restore many of these functions to normal (Grippo, Trahanas, Zimmerman, Porges, & Carter, 2009).

    In modern societies, humans can survive, at least after childhood, with little or no human contact. Communication technology, social media, electronic parenting, and many other recent technological advances may reduce social behaviors, placing both children and adults at risk for social isolation and disorders of the autonomic nervous system, including deficits in their capacity for social engagement and love (Porges, 2011).

    Social engagement actually helps us to cope with stress. The same hormones and areas of the brain that increase the capacity of the body to survive stress also enable us to better adapt to an ever-changing social and physical environment. Individuals with strong emotional support and relationships are more resilient in the face of stressors than those who feel isolated or lonely. Lesions in various bodily tissues, including the brain, heal more quickly in animals that are living socially versus in isolation (Karelina & DeVries, 2011). The protective effects of positive sociality seem to rely on the same cocktail of hormones that carries a biological message of “love” throughout the body.

    Can love—or perhaps oxytocin—be a medicine?

    4-6 pill with heart drawing on it .png

    "your love is like bad medicine" by Rakka is licensed under CC BY-NC-ND 2.0.

    Although research has only begun to examine the physiological effects of these peptides beyond social behavior, there is a wealth of new evidence showing that oxytocin can influence physiological responses to stress and injury. As only one example, the molecules associated with love have restorative properties, including the ability to literally heal a “broken heart.” Oxytocin receptors are expressed in the heart, and precursors for oxytocin appear to be critical for the development of the fetal heart (Danalache, Gutkowska, Slusarz, Berezowska, & Jankowski, 2010). Oxytocin exerts protective and restorative effects in part through its capacity to convert undifferentiated stem cells into cardiomyocytes. Oxytocin can facilitate adult neurogenesis and tissue repair, especially after a stressful experience. We now know that oxytocin has direct anti-inflammatory and antioxidant properties in in vitro models of atherosclerosis (Szeto et al., 2008). The heart seems to rely on oxytocin as part of a normal process of protection and self-healing. Researchers are interested in the medical/therapeutic potential of oxytocin.

    Thus, oxytocin exposure early in life not only regulates our ability to love and form social bonds, it also affects our health and well-being. Oxytocin modulates the hypothalamic–pituitary adrenal (HPA) axis, especially in response to disruptions in homeostasis (Carter, 1998), and coordinates demands on the immune system and energy balance. Long-term, secure relationships provide emotional support and down-regulate reactivity of the HPA axis, whereas intense stressors, including birth, trigger activation of the HPA axis and sympathetic nervous system. The ability of oxytocin to regulate these systems probably explains the exceptional capacity of most women to cope with the challenges of childbirth and childrearing.

    Dozens of ongoing clinical trials are currently attempting to examine the therapeutic potential of oxytocin in disorders ranging from autism to heart disease. Of course, as in hormonal studies in voles, the effects are likely to depend on the history of the individual and the context, and to be dose-dependent. As this research is emerging, a variety of individual differences and apparent discrepancies in the effects of exogenous oxytocin are being reported. Most of these studies do not include any information on the endogenous hormones, or on the oxytocin or vasopressin receptors, which are likely to affect the outcome of such treatments.

    Research in this field is new and there is much left to understand. However, it is already clear that both love and oxytocin are powerful. Of course, with power comes responsibility. Although research into mechanisms through which love—or hormones such as oxytocin—may protect us against stress and disease is in its infancy, this knowledge will ultimately increase our understanding of the way that our emotions impact upon health and disease. The same molecules that allow us to give and receive love also link our need for others with health and well-being.

    Conclusion

    In this section, we’ve discussed historical and emerging approaches to sexual response. An important take-away to this section is that sexual responsiveness isn’t simply physiological: Psychological factors are also present. At the same time, biology matters and consideration for hormonal and neurological information can be important in our sexual experiences. Keeping an intersectional lens can be a helpful way of learning, evaluating and growing in your own sexual responses.

    Licenses and Attributions

    Carter, S. & Porges, S. (2021). Biochemistry of love. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/3629qu8v. Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.

    Lucas, D. & Fox, J. (2021). Human sexual anatomy and physiology. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/m28zt7ds. Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available in our Licensing Agreement.

    Adaptations: Reformatted. Modified content for language, application to subject and cohesion.

    TED’s videos may be used for non-commercial purposes under a Creative Commons License, Attribution–Non Commercial–No Derivatives (or the CC BY – NC – ND 4.0 International)

    TEDx Talks. (2016). Confidence and joy are the keys to a great sex life | Emily Nagoski | TEDxUniversityofNevada. https://www.youtube.com/watch?v=HILY0wWBlBMTed talk about confidence and joy increase great sex

    License

    Introduction to Human Sexuality by Ericka Goerling & Emerson Wolfe is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License


    Attributions:

    The above content was remix from:

    2.5: Biochemistry of Love is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by NOBA (The Noba Project).


    4.6: The Biochemistry of Love is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?