# 8.1.4: Decay vs. Interference

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Psychologists refer to the time between learning and testing as the retention interval. Memories can consolidate during that time, aiding retention. However, experiences can also occur that undermine the memory. For example, think of what you had for lunch yesterday—a pretty easy task. However, if you had to recall what you had for lunch 17 days ago, you may well fail (assuming you don’t eat the same thing every day). The 16 lunches you’ve had since that one have created retroactive interference . Retroactive interference refers to new activities (i.e., the subsequent lunches) during the retention interval (i.e., the time between the lunch 17 days ago and now) that interfere with retrieving the specific, older memory (i.e., the lunch details from 17 days ago). But just as newer things can interfere with remembering older things, so can the opposite happen. Proactive interference is when past memories interfere with the encoding of new ones. For example, if you have ever studied a second language, often times the grammar and vocabulary of your native language will pop into your head, impairing your fluency in the foreign language.

Retroactive interference is one of the main causes of forgetting (McGeoch, 1932). In the module Eyewitness Testimony and Memory Biases(http://noba.to/uy49tm37), Elizabeth Loftus describes her fascinating work on eyewitness memory, in which she shows how memory for an event can be changed via misinformation supplied during the retention interval. For example, if you witnessed a car crash but subsequently heard people describing it from their own perspective, this new information may interfere with or disrupt your own personal recollection of the crash. In fact, you may even come to remember the event happening exactly as the others described it! This misinformation effect in eyewitness memory represents a type of retroactive interference that can occur during the retention interval. Of course, if correct information is given during the retention interval, the witness’s memory will usually be improved.

Although interference may arise between the occurrence of an event and the attempt to recall it, the effect itself is always expressed when we retrieve memories , the topic to which we turn next.

In some cases our existing memories influence our new learning. This may occur either in a backward way or a forward way. Retroactive interference occurs when learning something new impairs our ability to retrieve information that was learned earlier . For example, if you have learned to program in one computer language, and then you learn to program in another similar one, you may start to make mistakes programming the first language that you never would have made before you learned the new one. In this case the new memories work backward (retroactively) to influence retrieval from memory that is already in place.

In contrast to retroactive interference, proactive interference works in a forward direction. Proactive interference occurs when earlier learning impairs our ability to encode information that we try to learn later . For example, if we have learned French as a second language, this knowledge may make it more difficult, at least in some respects, to learn a third language (say Spanish), which involves similar but not identical vocabulary.

This page titled 8.1.4: Decay vs. Interference is shared under a CC BY license and was authored, remixed, and/or curated by Mehgan Andrade and Neil Walker.