Skip to main content
Social Sci LibreTexts

9.1: Introduction

  • Page ID
    246596

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Children have a sense of wonder and natural curiosity about objects and events in their environment. Just like scientists, they seek information and actively explore and investigate the world around them, try things out to see what happens, and confirm or adjust their expectations.

    Science is a natural and developmentally appropriate focus for young children. Preschool science is about active learning, not merely memorizing scientific facts or passively observing the teacher's science demonstrations. Preschool science aims to nurture children’s habits of inquiry, critical thinking, creativity, innovative problem solving, open-mindedness, and the motivation to learn. Preschool science guides children’s natural curiosity into opportunities to observe, explore, and inquire about basic phenomena and materials in their world.

    Children learn and develop concepts about living things and physical objects from infancy. Preschool science provides children with focused experiences that allow them to learn ways to explore and extend their knowledge. Children begin to adopt scientific ideas and to acquire the basic skills and language of scientific inquiry (ways to explore and develop knowledge and understanding of scientific ideas). Making observations, posing questions, planning investigations, using tools to gather information, making predictions, recording information, and communicating findings and explanations all combine in an evolving process of developing science understanding and creating a disposition to choose to learn science in the future.

    Science can be conducted in any preschool setting. Regardless of the level of resources and access to nature, all preschools can utilize their existing resources to create a program that offers meaningful science learning experiences. Pushing cars down an incline, building with blocks, manipulating tubes at the water table, or mixing clay with water are everyday play activities that engage children in experimenting with objects and materials. Collecting leaves, searching for insects in the yard, sorting and classifying fruits and vegetables, and sprouting seeds in pots engage children with living things. Experiences of child-initiated play are important as they provide children with opportunities to construct understanding and integrate knowledge. With teachers’ intentional planning, guidance, and support, children’s play and interactions with objects can become rich experiences in scientific inquiry, facilitating children’s knowledge and understanding of objects and events in the world.

    Preschool teachers play a pivotal role in expanding children’s understanding of science concepts and developing their attitudes, skills, and language of scientific inquiry. Teachers can focus children’s attention on particular science concepts that are developmentally appropriate, interesting, and engaging for both children and teachers. They can create engaging inquiry experiences that encourage close observations of objects and events.

    Children may connect their own growth to the growth of other animals and begin to develop a broader understanding of living things. Such experiences of scientific inquiry not only support children’s development of scientific knowledge but also provide a natural vehicle for developing their social skills and their development in mathematics, language, literacy, and other domains.

    Children sorting pictures to depict the life cycle of a butterfly
    Figure 10.1: A teacher utilized background knowledge to assist the children in creating this bilingual butterfly life cycle documentation.[1]

    Preschool teachers do not need extensive scientific knowledge to teach it effectively. Still, they should be willing to research and gain a general understanding of the concepts and principles they explore with children. Basic research readily provides the kind and amount of information or knowledge they need to know. Acquiring some background knowledge about the topic helps teachers plan inquiry experiences and challenge and support children through their explorations.

    Teachers do not need to have answers to all the questions children will raise. Rather than providing answers, teachers can use children’s questions as a springboard for further investigations. They may say, “I don’t know. Let’s find out together.” Teachers must become “scientists” with children, modeling a questioning mind and thinking out loud to express interest and enthusiasm. Teachers’ thoughtful guidance and support through inquiry experiences build a foundation for children’s understanding of basic science concepts, foster a positive approach to learning, and develop learning skills and attitudes necessary for later success in science and other subjects.[2]

    References

    [1] The California Preschool Curriculum Framework, Volume 3 by the California Department of Education is used with permission

    [2] The California Preschool Curriculum Framework, Volume 3 by the California Department of Education is used with permission


    This page titled 9.1: Introduction is shared under a mixed license and was authored, remixed, and/or curated by .